Evaluating the deterioration of a concentric heat exchanger using energy and exergy degradation factors

Esam I Jassim
{"title":"Evaluating the deterioration of a concentric heat exchanger using energy and exergy degradation factors","authors":"Esam I Jassim","doi":"10.36963/ijtst.2022090404","DOIUrl":null,"url":null,"abstract":"The aim of the present study is to develop a new technique for assessing the sustainability of concentric heat exchanger through quantifying the deterioration caused by energy destruction and entropy generation. The study also addresses the interconnection between heat capacity rate, flow rate, exchange flow configuration, and the sources of energy destruction. The degradation of the exchanger performance is portrayed by the newly-developed coefficients. The outcome of the study shows that heat capacity rates of cold and hot fluids have remarkable impact on the effectiveness of the heat exchanger, particularly when the ratio of such capacity rate is close to unity. Quantitively speaking, by doubling the cold fluid flow rate, the effectiveness declines by ~13% since the minimum capacity ratio is also doubled. However, as the flowrate of the cold fluid further increases, the effectiveness ameliorates by ~ 6.5 % for parallel flow and 37.5% for counter flow, succeeding the reduction in the minimum capacity ratio by ~25% and 34 %, respectively. Experimental observation confirmed that deterioration due to irreversibility production generates eminent penalties in the exchanger performance, decreasing the exergy efficiency up to 52%.","PeriodicalId":36637,"journal":{"name":"International Journal of Thermofluid Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluid Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36963/ijtst.2022090404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of the present study is to develop a new technique for assessing the sustainability of concentric heat exchanger through quantifying the deterioration caused by energy destruction and entropy generation. The study also addresses the interconnection between heat capacity rate, flow rate, exchange flow configuration, and the sources of energy destruction. The degradation of the exchanger performance is portrayed by the newly-developed coefficients. The outcome of the study shows that heat capacity rates of cold and hot fluids have remarkable impact on the effectiveness of the heat exchanger, particularly when the ratio of such capacity rate is close to unity. Quantitively speaking, by doubling the cold fluid flow rate, the effectiveness declines by ~13% since the minimum capacity ratio is also doubled. However, as the flowrate of the cold fluid further increases, the effectiveness ameliorates by ~ 6.5 % for parallel flow and 37.5% for counter flow, succeeding the reduction in the minimum capacity ratio by ~25% and 34 %, respectively. Experimental observation confirmed that deterioration due to irreversibility production generates eminent penalties in the exchanger performance, decreasing the exergy efficiency up to 52%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用能量和火用退化因子评价同心热交换器的退化
本研究的目的是开发一种新的技术,通过量化由能量破坏和熵产生引起的恶化来评估同心换热器的可持续性。该研究还讨论了热容量率、流量、交换流配置和能量破坏源之间的相互联系。新建立的系数描述了换热器性能的退化。研究结果表明,冷热流体的热容率对换热器的有效性有显著的影响,特别是当两者的热容率之比接近于一时。从数量上讲,当冷流体流量增加一倍时,由于最小容量比也增加一倍,因此效率下降了约13%。然而,随着冷流体流量的进一步增加,在最小容量比分别降低约25%和34%之后,平行流和逆流的效率分别提高了约6.5%和37.5%。实验观察证实,由于不可逆性生产导致的恶化对换热器性能产生了显著的影响,使火用效率降低了52%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
14
期刊最新文献
Performance analysis of ejector refrigeration cycle with zeotropic mixtures Effect of viscous dissipation on the onset of jeffery fluid porous convection in the presence of throughflow and electric field Thermo-fluidic characteristics of an aerodynamic swirl nozzle with low-concentration nanofluids Evaluation of conventional fluid mechanic theory in small channels with singularity Natural convection of power-law fluid in a horizontal annulus between outer cylinder and inner flat tube
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1