Onset of surface driven convection in selfrewetting fluid layer overlying a porous medium

Y. Gangadharaiah
{"title":"Onset of surface driven convection in selfrewetting fluid layer overlying a porous medium","authors":"Y. Gangadharaiah","doi":"10.36963/ijtst.2022090504","DOIUrl":null,"url":null,"abstract":"The onset of thermocapillary convective motion in a self-rewetting fluid layer overlying a porous medium with thermally dependent surface tension is studied analytically. Surface tension is assumed to be a quadratic function of temperature. The top surface of a fluid layer is deformably free and the bottom is rigid. We considered boundaries to be insulating to temperature perturbations. The governing equation that satisfies the composite system is analyzed by the normal mode approach and solved by the regular perturbation technique for linear stability. A mathematical expression is derived for the critical Marangoni number by solving coupled equations. The influence of crispation number, thermal diffusivity ratio, and other physical parameters involved therein are analyzed for the convective stability of the bilayer system. It has been found that the start of convection is delayed when the crispation number goes down and the thermal diffusivity ratio goes up. Also, the impact of the ratio of the thickness of the fluid to the thickness of the porous matrix and the other physical parameters on controlling the convective motion of the configuration is examined in detail.","PeriodicalId":36637,"journal":{"name":"International Journal of Thermofluid Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluid Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36963/ijtst.2022090504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The onset of thermocapillary convective motion in a self-rewetting fluid layer overlying a porous medium with thermally dependent surface tension is studied analytically. Surface tension is assumed to be a quadratic function of temperature. The top surface of a fluid layer is deformably free and the bottom is rigid. We considered boundaries to be insulating to temperature perturbations. The governing equation that satisfies the composite system is analyzed by the normal mode approach and solved by the regular perturbation technique for linear stability. A mathematical expression is derived for the critical Marangoni number by solving coupled equations. The influence of crispation number, thermal diffusivity ratio, and other physical parameters involved therein are analyzed for the convective stability of the bilayer system. It has been found that the start of convection is delayed when the crispation number goes down and the thermal diffusivity ratio goes up. Also, the impact of the ratio of the thickness of the fluid to the thickness of the porous matrix and the other physical parameters on controlling the convective motion of the configuration is examined in detail.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多孔介质上自润湿流体层表面驱动对流的开始
分析研究了表面张力与热相关的多孔介质上的自润湿流体层中热毛细对流运动的开始。假定表面张力是温度的二次函数。流体层的上表面是可变形自由的,而下表面是刚性的。我们认为边界对温度扰动是绝缘的。用正模态法分析了复合系统的控制方程,并用正则摄动法求解了系统的线性稳定性。通过求解耦合方程,导出了临界马兰戈尼数的数学表达式。分析了脆裂数、热扩散率等物理参数对双层体系对流稳定性的影响。研究发现,随着脆片数的减小和热扩散比的增大,对流的开始时间延迟。此外,还详细研究了流体厚度与多孔基质厚度之比以及其他物理参数对控制结构对流运动的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
14
期刊最新文献
Performance analysis of ejector refrigeration cycle with zeotropic mixtures Effect of viscous dissipation on the onset of jeffery fluid porous convection in the presence of throughflow and electric field Thermo-fluidic characteristics of an aerodynamic swirl nozzle with low-concentration nanofluids Evaluation of conventional fluid mechanic theory in small channels with singularity Natural convection of power-law fluid in a horizontal annulus between outer cylinder and inner flat tube
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1