An Intelligent Tumors Coding Method Based on Drools

P. Yang, Gang Liu, Xiaoyu Li, Li Qin, Xiaoxia Liu
{"title":"An Intelligent Tumors Coding Method Based on Drools","authors":"P. Yang, Gang Liu, Xiaoyu Li, Li Qin, Xiaoxia Liu","doi":"10.32604/jnm.2020.010135","DOIUrl":null,"url":null,"abstract":"In order to solve the problems of low efficiency and heavy workload of tumor coding in hospitals, we proposed a Drools-based intelligent tumors coding method. At present, most tumor hospitals use manual coding, the trained coders follow the main diagnosis selection rules to select the main diagnosis from the discharge diagnosis of the tumor patients, and then code all the discharge diagnoses according to the coding rules. Owing to different coders have different familiarity with the main diagnosis selection rules and ICD-10 disease coding, it will reduce the efficiency of the artificial coding results and affect the quality of the whole medical record. We first analyze the ICD library information, doctor's diagnostic information, radiotherapy information or chemotherapy information, surgery information, hospitalization information and other related information, and then generated Drools rule files based on the main diagnostic selection principles and coding principles, we also combined the text similarity analysis algorithm to construct an intelligent diagnostic information coding method. Practice shows that the coding method can be used to make the work efficiently and at the same time obtain the coding results which meet the standard and have high accuracy, so that the coders can be free from the repeated work and pay more attention to coding quality control and the coding logic adjustment.","PeriodicalId":69198,"journal":{"name":"新媒体杂志(英文)","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"新媒体杂志(英文)","FirstCategoryId":"1092","ListUrlMain":"https://doi.org/10.32604/jnm.2020.010135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In order to solve the problems of low efficiency and heavy workload of tumor coding in hospitals, we proposed a Drools-based intelligent tumors coding method. At present, most tumor hospitals use manual coding, the trained coders follow the main diagnosis selection rules to select the main diagnosis from the discharge diagnosis of the tumor patients, and then code all the discharge diagnoses according to the coding rules. Owing to different coders have different familiarity with the main diagnosis selection rules and ICD-10 disease coding, it will reduce the efficiency of the artificial coding results and affect the quality of the whole medical record. We first analyze the ICD library information, doctor's diagnostic information, radiotherapy information or chemotherapy information, surgery information, hospitalization information and other related information, and then generated Drools rule files based on the main diagnostic selection principles and coding principles, we also combined the text similarity analysis algorithm to construct an intelligent diagnostic information coding method. Practice shows that the coding method can be used to make the work efficiently and at the same time obtain the coding results which meet the standard and have high accuracy, so that the coders can be free from the repeated work and pay more attention to coding quality control and the coding logic adjustment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Drools的智能肿瘤编码方法
为了解决医院肿瘤编码效率低、工作量大的问题,提出了一种基于drools的智能肿瘤编码方法。目前大多数肿瘤医院采用人工编码,经过训练的编码人员按照主要诊断选择规则,从肿瘤患者的出院诊断中选择主要诊断,然后按照编码规则对所有出院诊断进行编码。由于不同编码员对主要诊断选择规则和ICD-10疾病编码的熟悉程度不同,会降低人工编码结果的效率,影响整个病案的质量。我们首先对ICD库信息、医生诊断信息、放疗信息或化疗信息、手术信息、住院信息等相关信息进行分析,然后根据主要诊断选择原则和编码原则生成Drools规则文件,并结合文本相似度分析算法构建智能诊断信息编码方法。实践表明,采用该编码方法可以使工作效率高,同时得到符合标准、精度高的编码结果,使编码器从重复工作中解脱出来,更加注重编码质量控制和编码逻辑调整。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Review of Visible-Infrared Cross-Modality Person Re-Identification Accurate Machine Learning Predictions of Sci-Fi Film Performance The Review of Secret Image Sharing Research on Parking Path Planing Based on A-Star Algorithm Cost Efficient Automated Fog Spraying Machine: A Covid-19 Hand Sanitization Solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1