Combination of Fuzzy Logic and Kriging Technique Under Uncertainty for Spatial Data Prediction

S. Ibrahim, G. Dhaher
{"title":"Combination of Fuzzy Logic and Kriging Technique Under Uncertainty for Spatial Data Prediction","authors":"S. Ibrahim, G. Dhaher","doi":"10.33899/edusj.2022.134166.1249","DOIUrl":null,"url":null,"abstract":". This paper deals with the spatial prediction in Geostatistics. This paper depend on interpellation methods of spatial statistic (ordinary kriging technique) to combination with fuzzy logic under uncertainty for spatial data prediction. This work includes the best linear unbiased estimator prediction by using formals of linear prediction and variance kriging to find prediction by Appling on real spatial data. The data adopted from real spatial data represented the depth of real underground water wells with real location from Mosul city/Iraq. We took (100) real data with locations in study area. We applied empiricism variogram function to get the properties of variogram function. We combination between kriging technique with fuzzy logic (Mamdani Fuzzy Model). To get the best Mathematical model under uncertainty. We getting the results between kriging and fuzzy logic using Matlab language.This study is a continuation of the research conducted in this context Which is very important to highlight.","PeriodicalId":33491,"journal":{"name":"mjl@ ltrby@ wl`lm","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mjl@ ltrby@ wl`lm","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33899/edusj.2022.134166.1249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

. This paper deals with the spatial prediction in Geostatistics. This paper depend on interpellation methods of spatial statistic (ordinary kriging technique) to combination with fuzzy logic under uncertainty for spatial data prediction. This work includes the best linear unbiased estimator prediction by using formals of linear prediction and variance kriging to find prediction by Appling on real spatial data. The data adopted from real spatial data represented the depth of real underground water wells with real location from Mosul city/Iraq. We took (100) real data with locations in study area. We applied empiricism variogram function to get the properties of variogram function. We combination between kriging technique with fuzzy logic (Mamdani Fuzzy Model). To get the best Mathematical model under uncertainty. We getting the results between kriging and fuzzy logic using Matlab language.This study is a continuation of the research conducted in this context Which is very important to highlight.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不确定条件下模糊逻辑和Kriging技术相结合的空间数据预测
。本文讨论地统计学中的空间预测问题。本文将空间统计的质询方法(普通克里格技术)与不确定条件下的模糊逻辑相结合,对空间数据进行预测。利用线性预测和方差克里金的形式对实际空间数据进行预测,得到最佳的线性无偏估计量预测。采用的数据来自真实空间数据,代表了伊拉克摩苏尔市真实位置的真实地下水井深度。我们在研究区域的位置采集了100个真实数据。应用经验变差函数得到了变差函数的性质。我们将克里金技术与模糊逻辑(Mamdani模糊模型)相结合。得到不确定条件下的最佳数学模型。利用Matlab语言对克里格和模糊逻辑进行了对比分析。本研究是在此背景下进行的研究的延续,这一点非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
38
审稿时长
24 weeks
期刊最新文献
Numerical Solution of the Fredholm Integro-Differential Equations Using High-Order Compact Finite Difference Method Implementing Runge-Kutta Method of Sixth-Order for Numerical Solution of Fuzzy Differential Equations Determining the fundamental conditions of the soliton solution for the new nonlocal discrete Separation and identification of a number of alkaloids and some phenols from two species of plants of the genus Euphorbia grown in Nineveh Governorate. Diagnosing Soft Tissue Tumors using Machine Learning Techniques: A Survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1