Unmanned aerial survey in the summer season of the 67th Russian antarctic expedition

I. Florinsky
{"title":"Unmanned aerial survey in the summer season of the 67th Russian antarctic expedition","authors":"I. Florinsky","doi":"10.35595/2414-9179-2022-1-28-284-304","DOIUrl":null,"url":null,"abstract":"The use of unmanned aerial systems (UAS) in glaciology and cryology, as well as studying and monitoring of polar regions is one of the most rapidly developing areas of the unmanned aerial industry. An aerial photogeodetic team of the 67th Russian Antarctic Expedition (RAE) solved two main interrelated tasks: 1) field tests of the newest Russian UAS Geoscan 701 in Antarctic conditions and 2) carrying out unmanned aerial surveys of two Antarctic territories, characterized by fundamentally different natural conditions, in order to obtain their high-precision orthomosaics and digital elevation models (DEMs) of an ultra-high resolution. On 15 January 2022, we carried out an unmanned aerial survey of two adjacent Antarctic maritime oases Molodezhny and Vecherny and surrounding areas of the glacier (Enderby Land, East Antarctica). From 26 January to 16 February 2022, we performed an unmanned aerial survey of the Fildes Peninsula (the southwestern, free of ice cover portion of the King George Island, South Shetland Islands, West Antarctica). The survey was complicated by severe meteorological conditions (low clouds, fog, strong winds, and precipitation). Field tests of UAS Geoscan 701 have shown that the system can be successfully used for unmanned aerial survey in polar regions. After in-office photogrammetric processing of the obtained materials, orthomosaics and DEMs of the indicated territories will be obtained with a resolution of 10 and 25 cm, respectively. These will be used for creation of modern large-scale topographic maps, photographic maps, three-dimensional and geomorphometric modeling of these territories, as well as operational and scientific activities of the RAE.","PeriodicalId":31498,"journal":{"name":"InterCarto InterGIS","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"InterCarto InterGIS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35595/2414-9179-2022-1-28-284-304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The use of unmanned aerial systems (UAS) in glaciology and cryology, as well as studying and monitoring of polar regions is one of the most rapidly developing areas of the unmanned aerial industry. An aerial photogeodetic team of the 67th Russian Antarctic Expedition (RAE) solved two main interrelated tasks: 1) field tests of the newest Russian UAS Geoscan 701 in Antarctic conditions and 2) carrying out unmanned aerial surveys of two Antarctic territories, characterized by fundamentally different natural conditions, in order to obtain their high-precision orthomosaics and digital elevation models (DEMs) of an ultra-high resolution. On 15 January 2022, we carried out an unmanned aerial survey of two adjacent Antarctic maritime oases Molodezhny and Vecherny and surrounding areas of the glacier (Enderby Land, East Antarctica). From 26 January to 16 February 2022, we performed an unmanned aerial survey of the Fildes Peninsula (the southwestern, free of ice cover portion of the King George Island, South Shetland Islands, West Antarctica). The survey was complicated by severe meteorological conditions (low clouds, fog, strong winds, and precipitation). Field tests of UAS Geoscan 701 have shown that the system can be successfully used for unmanned aerial survey in polar regions. After in-office photogrammetric processing of the obtained materials, orthomosaics and DEMs of the indicated territories will be obtained with a resolution of 10 and 25 cm, respectively. These will be used for creation of modern large-scale topographic maps, photographic maps, three-dimensional and geomorphometric modeling of these territories, as well as operational and scientific activities of the RAE.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
第67次俄罗斯南极考察队夏季的无人机调查
无人机系统(UAS)在冰川学和冰冻学以及极地研究和监测中的应用是无人机工业发展最快的领域之一。俄罗斯第67次南极考察队(RAE)的航空摄影大地测量队解决了两项相互关联的主要任务:1)在南极条件下对俄罗斯最新的UAS Geoscan 701进行实地测试;2)在两个自然条件截然不同的南极地区进行无人驾驶航空测量,以获得其高精度正测图和超高分辨率的数字高程模型(dem)。2022年1月15日,我们对两个相邻的南极海洋绿洲莫洛杰日尼和维切尔内以及冰川周边地区(南极洲东部恩德比地)进行了无人机调查。2022年1月26日至2月16日,我们对菲尔德斯半岛(南极洲西部南设得兰群岛乔治国王岛西南部无冰覆盖部分)进行了一次无人机调查。由于恶劣的气象条件(低云、大雾、强风和降水),调查变得更加复杂。UAS Geoscan 701的现场测试表明,该系统可以成功地用于极地地区的无人航空测量。对获取的材料进行现场摄影测量处理后,将分别以10和25厘米的分辨率获得指定地区的正形图和dem。这些数据将用于绘制这些领土的现代大比例尺地形图、照相地图、三维和地貌模型,以及研究区域评估的业务和科学活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
2
审稿时长
8 weeks
期刊最新文献
Creating virtual models for designing port complexes based on lidar data Methodology of constructive approach in geoinformation mapping of geographical environment Cartographic support of identification of natural and man-made sources of dissolved matter in lake Baikal basin Geoinformation support of the school course of geography Evaluation of the possibility of vegetation interpretation on thermal infrared satellite images, case of the Southern Urals and Kuznetsk Alatau
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1