RIFA: A Differential Gene Connectivity Algorithm

Todd Allen
{"title":"RIFA: A Differential Gene Connectivity Algorithm","authors":"Todd Allen","doi":"10.3888/tmj.17-2","DOIUrl":null,"url":null,"abstract":"With the invention of microarray technology, scientists finally had a means to measure global changes in gene expression between two biological states [1]. This has led to thousands of scientific publications describing long lists of differentially expressed genes in each scientist’s favorite experimental system. What has gradually become apparent to biologists is that having a list of differentially expressed genes, while an important first step in understanding the differences between two phenotypes (where phenotype represents the physical manifestation of one or more traits), is often not enough to identify the genes most directly responsible for driving changes in phenotype. While it is true that genes that are differentially expressed between two biological states may be important in explaining those differences, it is also possible that genes whose expression is not changed can also be pivotal in driving phenotypic differences.","PeriodicalId":91418,"journal":{"name":"The Mathematica journal","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Mathematica journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3888/tmj.17-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the invention of microarray technology, scientists finally had a means to measure global changes in gene expression between two biological states [1]. This has led to thousands of scientific publications describing long lists of differentially expressed genes in each scientist’s favorite experimental system. What has gradually become apparent to biologists is that having a list of differentially expressed genes, while an important first step in understanding the differences between two phenotypes (where phenotype represents the physical manifestation of one or more traits), is often not enough to identify the genes most directly responsible for driving changes in phenotype. While it is true that genes that are differentially expressed between two biological states may be important in explaining those differences, it is also possible that genes whose expression is not changed can also be pivotal in driving phenotypic differences.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
差分基因连接算法
随着微阵列技术的发明,科学家们终于有了一种方法来测量两种生物状态之间基因表达的全局变化。这导致成千上万的科学出版物描述了每个科学家最喜欢的实验系统中差异表达基因的长列表。对于生物学家来说,逐渐变得明显的是,虽然拥有差异表达基因的列表是理解两种表型之间差异的重要第一步(表型代表一种或多种特征的物理表现),但通常不足以确定最直接负责驱动表型变化的基因。虽然在两种生物状态之间表达差异的基因可能在解释这些差异方面很重要,但也有可能表达未改变的基因也可能是驱动表型差异的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mixing Numbers and Unfriendly Colorings of Graphs Selected Financial Applications Coverage versus Confidence Numerical Contour Integration Unconditional Applicability of Lehmer’s Measure to the Two-Term Machin-like Formula for π
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1