R. Taccani, Stefano Malabotti, C. Dall’Armi, D. Micheli
{"title":"High energy density storage of gaseous marine fuels: An innovative concept and its application to a hydrogen powered ferry","authors":"R. Taccani, Stefano Malabotti, C. Dall’Armi, D. Micheli","doi":"10.3233/isp-190274","DOIUrl":null,"url":null,"abstract":"The upcoming stricter limitations on both pollutant and greenhouse gases emissions represent a challenge for the shipping sector. The entire ship design process requires an approach to innovation, with a particular focus on both the fuel choice and the power generation system. Among the possible alternatives, natural gas and hydrogen based propulsion systems seem to be promising in the medium and long term. Nonetheless, natural gas and hydrogen storage still represents a problem in terms of cargo volume reduction. This paper focuses on the storage issue, considering compressed gases, and presents an innovative solution, which has been developed in the European project GASVESSEL® that allows to store gaseous fuels with an energy density higher than conventional intermediate pressure containment systems. After a general overview of natural gas and hydrogen as fuels for shipping, a case study of a small Roll-on/Rolloff passenger ferry retrofit is proposed. The study analyses the technical feasibility of the installation of a hybrid power system with batteries and polymer electrolyte membrane fuel cells, fuelled by hydrogen. In particular, a process simulation model has been implemented to assess the quantity of hydrogen that can be stored on board, taking into account boundary conditions such as filling time, on shore storage capacity and cylinder wall temperature. The simulation results show that, if the fuel cells system is run continuously at steady state, to cover the energy need for one day of operation 140 kg of hydrogen are required. Using the innovative pressure cylinder at a storage pressure of 300 bar the volume required by the storage system, assessed on the basis of the containment system outer dimensions, is resulted to be 15.2 m3 with a weight of 2.5 ton. Even if the innovative type of pressure cylinder allows to reach an energy density higher than conventional intermediate pressure cylinders, the volume necessary to store a quantity of energy typical for the shipping sector is many times higher than that required by conventional fuels today used. The analysis points out, as expected, that the filling process is critical to maximize the stored hydrogen mass and that it is critical to measure the temperature of the cylinder walls in order not to exceed the material limits. Nevertheless, for specific application such as the one considered in the paper, the introduction of gaseous hydrogen as fuel, can be considered for implementing zero local emission propulsion system in the medium term.","PeriodicalId":45800,"journal":{"name":"International Shipbuilding Progress","volume":"67 1","pages":"33-56"},"PeriodicalIF":0.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/isp-190274","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Shipbuilding Progress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/isp-190274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 11
Abstract
The upcoming stricter limitations on both pollutant and greenhouse gases emissions represent a challenge for the shipping sector. The entire ship design process requires an approach to innovation, with a particular focus on both the fuel choice and the power generation system. Among the possible alternatives, natural gas and hydrogen based propulsion systems seem to be promising in the medium and long term. Nonetheless, natural gas and hydrogen storage still represents a problem in terms of cargo volume reduction. This paper focuses on the storage issue, considering compressed gases, and presents an innovative solution, which has been developed in the European project GASVESSEL® that allows to store gaseous fuels with an energy density higher than conventional intermediate pressure containment systems. After a general overview of natural gas and hydrogen as fuels for shipping, a case study of a small Roll-on/Rolloff passenger ferry retrofit is proposed. The study analyses the technical feasibility of the installation of a hybrid power system with batteries and polymer electrolyte membrane fuel cells, fuelled by hydrogen. In particular, a process simulation model has been implemented to assess the quantity of hydrogen that can be stored on board, taking into account boundary conditions such as filling time, on shore storage capacity and cylinder wall temperature. The simulation results show that, if the fuel cells system is run continuously at steady state, to cover the energy need for one day of operation 140 kg of hydrogen are required. Using the innovative pressure cylinder at a storage pressure of 300 bar the volume required by the storage system, assessed on the basis of the containment system outer dimensions, is resulted to be 15.2 m3 with a weight of 2.5 ton. Even if the innovative type of pressure cylinder allows to reach an energy density higher than conventional intermediate pressure cylinders, the volume necessary to store a quantity of energy typical for the shipping sector is many times higher than that required by conventional fuels today used. The analysis points out, as expected, that the filling process is critical to maximize the stored hydrogen mass and that it is critical to measure the temperature of the cylinder walls in order not to exceed the material limits. Nevertheless, for specific application such as the one considered in the paper, the introduction of gaseous hydrogen as fuel, can be considered for implementing zero local emission propulsion system in the medium term.
期刊介绍:
The journal International Shipbuilding Progress was founded in 1954. Each year four issues appear (in April, July, September and December). Publications submitted to ISP should describe scientific work of high international standards, advancing subjects related to the field of Marine Technology, such as: conceptual design structural design hydromechanics and dynamics maritime engineering production of all types of ships production of all other objects intended for marine use shipping science and all directly related subjects offshore engineering in relation to the marine environment ocean engineering subjects in relation to the marine environment