Numerical Model for Fluid-Structure Interaction by the Coupled SPH and the FEM Method

A. Harapin, Jure Radni, Marina Sunara Kusi
{"title":"Numerical Model for Fluid-Structure Interaction by the Coupled SPH and the FEM Method","authors":"A. Harapin, Jure Radni, Marina Sunara Kusi","doi":"10.31534/engmod.2019.1.ri.02m","DOIUrl":null,"url":null,"abstract":"The paper presents the numerical model developed for the simulation of the fluid-structure interaction problem. The model is based on the so called “partition scheme”, in which the Smoothed Particle Hydrodynamics (SPH) method is used for the fluid and the standard Finite Element Method (FEM), based on shell elements, is used for the structure. Then, the two solvers are coupled to obtain the behaviour of the coupled fluid-structure system. The effects of large displacements and small strains are taken into account in the model for shells. The elasto-plastic material model for the structure (shell), which includes some important nonlinear effects like yielding in compression and tension, is briefly discussed. Some of the model’s possibilities are illustrated in a practical example of a rectangular medium sized fluid tank with rigid and deformable walls under several ground excitations.","PeriodicalId":35748,"journal":{"name":"International Journal for Engineering Modelling","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.31534/engmod.2019.1.ri.02m","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Engineering Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31534/engmod.2019.1.ri.02m","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

Abstract

The paper presents the numerical model developed for the simulation of the fluid-structure interaction problem. The model is based on the so called “partition scheme”, in which the Smoothed Particle Hydrodynamics (SPH) method is used for the fluid and the standard Finite Element Method (FEM), based on shell elements, is used for the structure. Then, the two solvers are coupled to obtain the behaviour of the coupled fluid-structure system. The effects of large displacements and small strains are taken into account in the model for shells. The elasto-plastic material model for the structure (shell), which includes some important nonlinear effects like yielding in compression and tension, is briefly discussed. Some of the model’s possibilities are illustrated in a practical example of a rectangular medium sized fluid tank with rigid and deformable walls under several ground excitations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
流固耦合SPH与有限元方法的数值模型
本文介绍了为模拟流固耦合问题而建立的数值模型。该模型基于所谓的“分配方案”,其中流体采用光滑粒子流体力学(SPH)方法,结构采用基于壳单元的标准有限元方法(FEM)。然后,将两个求解器进行耦合,得到耦合流固耦合系统的特性。模型中考虑了大位移和小应变的影响。简要讨论了结构(壳)的弹塑性材料模型,其中包括一些重要的非线性效应,如压缩屈服和拉伸屈服。通过一个在几种地面激励下具有刚性和可变形壁面的矩形中型储液罐的实例说明了该模型的一些可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal for Engineering Modelling
International Journal for Engineering Modelling Engineering-Mechanical Engineering
CiteScore
0.90
自引率
0.00%
发文量
12
期刊介绍: Engineering Modelling is a refereed international journal providing an up-to-date reference for the engineers and researchers engaged in computer aided analysis, design and research in the fields of computational mechanics, numerical methods, software develop-ment and engineering modelling.
期刊最新文献
Modelling a Contention-Based Wireless MAC Protocol with EDCA Countdown and Constrained Priority Freezing Analysis of Stress Intensity Factor in a Cracked Plate Vibratory Conveying by Normal Oscillations with Piecewise Constant Acceleration and Longitudinal Harmonic Oscillations Performance of Multiscale Hydrodynamic Step Bearing with Inhomogeneous Surfaces Pre-modeling by Arc Hydro Tools
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1