Evaluation of integrated UFCW-MFC reactor for azo dye wastewater treatment and simultaneous bioelectricity generation

IF 0.5 4区 环境科学与生态学 Q4 ENGINEERING, ENVIRONMENTAL Environment Protection Engineering Pub Date : 2020-01-01 DOI:10.37190/epe200105
H. Zou, L. Chu, Yan Wang
{"title":"Evaluation of integrated UFCW-MFC reactor for azo dye wastewater treatment and simultaneous bioelectricity generation","authors":"H. Zou, L. Chu, Yan Wang","doi":"10.37190/epe200105","DOIUrl":null,"url":null,"abstract":"An up-flow constructed wetland (UFCW) incorporating a novel membrane-less air-cathode single-chamber microbial fuel cell (MFC) was designed to treat dye wastewater and simultaneously generate bioelectricity. The performance of UFCW-MFC was evaluated via Methyl Orange (MO) and chemical oxygen demand (COD) removal rates and the output voltage. For comparison, the performance of a single UFCW was also assessed. A repeatable and stable voltage output of about 0.44±0.2 V was obtained in UFCW-MFC. The MO and COD removal rates in UFCW-MFC were 93.5 and 57.2%, respectively, significantly higher than those in single UFCW (75.4 and 42.6%, respectively), suggesting the obvious enhancement of electrodes on MO and COD removal. The anode zone of UFCW-MFC made the most contribution to MO and COD removal compared with other layers. The oxidation-reduction potential (ORP) and dissolved oxygen (DO) profiles showed that the anaerobic environment was well developed in the lower part of UFCW-MFC (0–24 cm) and the upper part (41–42 cm) had a good aerobic environment, thus greatly contributing to the MO anaerobic reduction and aerobic degradation of breakdown products. These results obtained here suggest that the UFCW-MFC may provide an effective alternative for the treatment of dye wastewater and simultaneous bioelectricity generation.","PeriodicalId":11709,"journal":{"name":"Environment Protection Engineering","volume":"46 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment Protection Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.37190/epe200105","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 1

Abstract

An up-flow constructed wetland (UFCW) incorporating a novel membrane-less air-cathode single-chamber microbial fuel cell (MFC) was designed to treat dye wastewater and simultaneously generate bioelectricity. The performance of UFCW-MFC was evaluated via Methyl Orange (MO) and chemical oxygen demand (COD) removal rates and the output voltage. For comparison, the performance of a single UFCW was also assessed. A repeatable and stable voltage output of about 0.44±0.2 V was obtained in UFCW-MFC. The MO and COD removal rates in UFCW-MFC were 93.5 and 57.2%, respectively, significantly higher than those in single UFCW (75.4 and 42.6%, respectively), suggesting the obvious enhancement of electrodes on MO and COD removal. The anode zone of UFCW-MFC made the most contribution to MO and COD removal compared with other layers. The oxidation-reduction potential (ORP) and dissolved oxygen (DO) profiles showed that the anaerobic environment was well developed in the lower part of UFCW-MFC (0–24 cm) and the upper part (41–42 cm) had a good aerobic environment, thus greatly contributing to the MO anaerobic reduction and aerobic degradation of breakdown products. These results obtained here suggest that the UFCW-MFC may provide an effective alternative for the treatment of dye wastewater and simultaneous bioelectricity generation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
UFCW-MFC一体化反应器处理偶氮染料废水及同步生物发电效果评价
设计了一种新型无膜空气阴极单室微生物燃料电池(MFC)的上流式人工湿地(UFCW),用于处理染料废水并同时产生生物电。通过甲基橙(MO)、化学需氧量(COD)去除率和输出电压对UFCW-MFC的性能进行了评价。为了进行比较,还对单个UFCW的性能进行了评估。在UFCW-MFC中获得了可重复且稳定的约0.44±0.2 V的电压输出。UFCW- mfc对MO和COD的去除率分别为93.5%和57.2%,显著高于单一UFCW的75.4和42.6%,表明电极对MO和COD的去除率有明显增强。与其他层相比,UFCW-MFC阳极区对MO和COD的去除贡献最大。氧化还原电位(ORP)和溶解氧(DO)曲线表明,UFCW-MFC下部(0 ~ 24 cm)厌氧环境发育良好,上部(41 ~ 42 cm)好氧环境良好,对MO的厌氧还原和分解产物的好氧降解有很大的促进作用。这些结果表明,UFCW-MFC可以为染料废水的处理和同步生物发电提供有效的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environment Protection Engineering
Environment Protection Engineering 环境科学-工程:环境
CiteScore
0.80
自引率
0.00%
发文量
9
审稿时长
12 months
期刊介绍: Water purification, wastewater treatment, water reuse, solid waste disposal, gas emission abatement, systems of water and air pollution control, soil remediation.
期刊最新文献
Design of UVA-LED concentric glass tube microreactor and evaluation of photocatalysis with simultaneous adsorption and hydrodynamic cavitation for fluorescent dye degradation Open burning and open detonation of explosives. Prediction of pollutant emissions Quantile estimation of probability distributions for maximum daily precipitation and short time series of observational data for engineering design Simulation of the migration path of the maximum pollutants’ concentration. Case study of the tailing pond, southwest China Performance evaluation of nanofiltration membranes for dye removal of synthetic hand-drawn batik industry wastewater
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1