Mantas Lukauskas, Tomas Rasymas, Matas Minelga, Domas Vaitmonas
{"title":"Large Scale Fine-Tuned Transformers Models Application for Business Names Generation","authors":"Mantas Lukauskas, Tomas Rasymas, Matas Minelga, Domas Vaitmonas","doi":"10.31577/cai_2023_3_525","DOIUrl":null,"url":null,"abstract":". Natural language processing (NLP) involves the computer analysis and processing of human languages using a variety of techniques aimed at adapting various tasks or computer programs to linguistically process natural language. Currently, NLP is increasingly applied to a wide range of real-world problems. These tasks can vary from extracting meaningful information from unstructured data, analyzing sentiment, translating text between languages, to generating human-level text autonomously. The goal of this study is to employ transformer-based natural language models to generate high-quality business names. Specifically, this work investigates whether larger models, which require more training time, yield better results for generating relatively short texts, such as business names. To achieve","PeriodicalId":55215,"journal":{"name":"Computing and Informatics","volume":"42 1","pages":"525-545"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing and Informatics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.31577/cai_2023_3_525","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
. Natural language processing (NLP) involves the computer analysis and processing of human languages using a variety of techniques aimed at adapting various tasks or computer programs to linguistically process natural language. Currently, NLP is increasingly applied to a wide range of real-world problems. These tasks can vary from extracting meaningful information from unstructured data, analyzing sentiment, translating text between languages, to generating human-level text autonomously. The goal of this study is to employ transformer-based natural language models to generate high-quality business names. Specifically, this work investigates whether larger models, which require more training time, yield better results for generating relatively short texts, such as business names. To achieve
期刊介绍:
Main Journal Topics:
COMPUTER ARCHITECTURES AND NETWORKING
PARALLEL AND DISTRIBUTED COMPUTING
THEORETICAL FOUNDATIONS
SOFTWARE ENGINEERING
KNOWLEDGE AND INFORMATION ENGINEERING
Apart from the main topics given above, the Editorial Board welcomes papers from other areas of computing and informatics.