Min Li, Siqi Shen, Yi-bin Xing, W. Jiao, Yongzhong Zhan, Ya-dan Sun, D. Guo, Yi-He Yu
{"title":"Vitis vinifera VvPUB17 functions as a E3 ubiquitin ligase and enhances powdery mildew resistance via the salicylic acid signaling pathway","authors":"Min Li, Siqi Shen, Yi-bin Xing, W. Jiao, Yongzhong Zhan, Ya-dan Sun, D. Guo, Yi-He Yu","doi":"10.3233/JBR-210709","DOIUrl":null,"url":null,"abstract":"BACKGROUND: Powdery mildew affects grapevine growth and development and reduces grapevine fruit yield and quality. Plant U-box (PUB) E3 ubiquitin ligases play important roles in ubiquitin/proteasome-mediated protein degradation during plant development and in the plant defense response. OBJECTIVE: We cloned the VvPUB17 gene from Vitis vinifera and analyzed that VvPUB17 enhanced the resistance of grapevine to powdery mildew through the SA signal pathway. METHODS: Pathogen inoculation of Arabidopsis thaliana and grapevine plants was carried out by the tableting method. Gene expression was analyzed by quantitative real-time PCR. Sequence analysis and in vitro ubiquitination experiments show the structure and characteristics of VvPUB17. Exogenous salicylic acid, methyl jasmonate, ethylene and powdery mildew induced the expression of VvPUB17 in Arabidopsis leaves to verify the resistance of VvPUB17 to powdery mildew. RESULTS: Sequence analysis and in vitro ubiquitination experiments show that VvPUB17 contains U-box and Armadillo repeats (ARM repeat) and has E3 ubiquitin ligase activity dependent on the conserved U-box motif. Transgenic plants showed elevated levels of key genes related to the SA defense response pathway and high concentrations of salicylic acid. CONCLUSIONS: VvPUB17 functions as an E3 ubiquitin ligase that enhances the resistance of grapes to powdery mildew through the SA signal pathway.","PeriodicalId":15194,"journal":{"name":"Journal of Berry Research","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/JBR-210709","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Berry Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3233/JBR-210709","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
BACKGROUND: Powdery mildew affects grapevine growth and development and reduces grapevine fruit yield and quality. Plant U-box (PUB) E3 ubiquitin ligases play important roles in ubiquitin/proteasome-mediated protein degradation during plant development and in the plant defense response. OBJECTIVE: We cloned the VvPUB17 gene from Vitis vinifera and analyzed that VvPUB17 enhanced the resistance of grapevine to powdery mildew through the SA signal pathway. METHODS: Pathogen inoculation of Arabidopsis thaliana and grapevine plants was carried out by the tableting method. Gene expression was analyzed by quantitative real-time PCR. Sequence analysis and in vitro ubiquitination experiments show the structure and characteristics of VvPUB17. Exogenous salicylic acid, methyl jasmonate, ethylene and powdery mildew induced the expression of VvPUB17 in Arabidopsis leaves to verify the resistance of VvPUB17 to powdery mildew. RESULTS: Sequence analysis and in vitro ubiquitination experiments show that VvPUB17 contains U-box and Armadillo repeats (ARM repeat) and has E3 ubiquitin ligase activity dependent on the conserved U-box motif. Transgenic plants showed elevated levels of key genes related to the SA defense response pathway and high concentrations of salicylic acid. CONCLUSIONS: VvPUB17 functions as an E3 ubiquitin ligase that enhances the resistance of grapes to powdery mildew through the SA signal pathway.
期刊介绍:
The main objective of the Journal of Berry Research is to improve the knowledge about quality and production of berries to benefit health of the consumers and maintain profitable production using sustainable systems. The objective will be achieved by focusing on four main areas of research and development:
From genetics to variety evaluation
Nursery production systems and plant quality control
Plant physiology, biochemistry and molecular biology, as well as cultural management
Health for the consumer: components and factors affecting berries'' nutritional value
Specifically, the journal will cover berries (strawberry, raspberry, blackberry, blueberry, cranberry currants, etc.), as well as grapes and small soft fruit in general (e.g., kiwi fruit). It will publish research results covering all areas of plant breeding, including plant genetics, genomics, functional genomics, proteomics and metabolomics, plant physiology, plant pathology and plant development, as well as results dealing with the chemistry and biochemistry of bioactive compounds contained in such fruits and their possible role in human health. Contributions detailing possible pharmacological, medical or therapeutic use or dietary significance will be welcomed in addition to studies regarding biosafety issues of genetically modified plants.