NITROGEN CAN LIMIT OVERSTORY TREE GROWTH FOLLOWING EXTREME STAND DENSITY INCREASE IN A PONDEROSA PINE FOREST

IF 1.1 4区 农林科学 Q3 FORESTRY Tree-Ring Research Pub Date : 2019-01-01 DOI:10.3959/1536-1098-75.1.49
L. Marshall, D. Falk, N. McDowell
{"title":"NITROGEN CAN LIMIT OVERSTORY TREE GROWTH FOLLOWING EXTREME STAND DENSITY INCREASE IN A PONDEROSA PINE FOREST","authors":"L. Marshall, D. Falk, N. McDowell","doi":"10.3959/1536-1098-75.1.49","DOIUrl":null,"url":null,"abstract":"ABSTRACT Extreme stand density increases have occurred in ponderosa pine forests throughout the western U.S. since the early 20th Century, with adverse implications for growth, physiological functioning, and mortality risk. Identifying primary stressors on large, old overstory trees in dense forests can inform management decisions to promote resilience and survival. We tested the impact of stand density increase on overstory tree-ring growth, and the relative influence of water and nitrogen, in an old-growth ponderosa pine forest in northern New Mexico subject to variable density increase. We measured annual tree-ring growth and carbon discrimination in trees before stand density increased, in a climatically-similar period post-density increase, and in recent transition to drought. We expected density-driven water stress to drive reduced tree-ring growth in overstory trees in dense stands. We found reduced growth and higher mortality in dense stands, but nitrogen rather than water constrained growth, as determined by carbon isotope discrimination in tree rings, leaf nitrogen concentration, and soil nitrogen supply. In dense stands, less available nitrogen limited photosynthetic rate, leading to reduced assimilation of intracellular 13 C and higher discrimination with low tree-ring growth and a reduced relationship with climate. This unexpected result illustrates that a variety of limiting factors can influence forest dynamics, as density-driven nitrogen limitation interacts with water stress to influence tree growth and physiological functioning.","PeriodicalId":54416,"journal":{"name":"Tree-Ring Research","volume":"75 1","pages":"49 - 60"},"PeriodicalIF":1.1000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tree-Ring Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3959/1536-1098-75.1.49","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT Extreme stand density increases have occurred in ponderosa pine forests throughout the western U.S. since the early 20th Century, with adverse implications for growth, physiological functioning, and mortality risk. Identifying primary stressors on large, old overstory trees in dense forests can inform management decisions to promote resilience and survival. We tested the impact of stand density increase on overstory tree-ring growth, and the relative influence of water and nitrogen, in an old-growth ponderosa pine forest in northern New Mexico subject to variable density increase. We measured annual tree-ring growth and carbon discrimination in trees before stand density increased, in a climatically-similar period post-density increase, and in recent transition to drought. We expected density-driven water stress to drive reduced tree-ring growth in overstory trees in dense stands. We found reduced growth and higher mortality in dense stands, but nitrogen rather than water constrained growth, as determined by carbon isotope discrimination in tree rings, leaf nitrogen concentration, and soil nitrogen supply. In dense stands, less available nitrogen limited photosynthetic rate, leading to reduced assimilation of intracellular 13 C and higher discrimination with low tree-ring growth and a reduced relationship with climate. This unexpected result illustrates that a variety of limiting factors can influence forest dynamics, as density-driven nitrogen limitation interacts with water stress to influence tree growth and physiological functioning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
黄松林林分密度急剧增加后,氮素会限制林分的生长
自20世纪初以来,整个美国西部的黄松林发生了极端的林分密度增加,对生长、生理功能和死亡风险产生了不利影响。在茂密的森林中确定大型、古老的上层树木的主要压力源可以为管理决策提供信息,以促进恢复力和生存。以新墨西哥州北部的黄松原生林为研究对象,研究了不同密度下林分密度增加对林分年轮生长的影响以及水分和氮的相对影响。我们测量了林分密度增加前、密度增加后气候相似时期和最近向干旱过渡期间树木的年轮生长和碳辨别。我们预计密度驱动的水分胁迫会导致密集林分中上层树木年轮生长的减少。通过树木年轮、叶片氮浓度和土壤氮供应的碳同位素判别,我们发现茂密林分的生长受到抑制,死亡率更高,但氮而非水限制生长。在茂密林分中,有效氮的减少限制了光合速率,导致细胞内13c的同化减少,树木年轮生长缓慢,与气候的关系减弱。这一意想不到的结果表明,多种限制因素可以影响森林动态,因为密度驱动的氮限制与水分胁迫相互作用,影响树木的生长和生理功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tree-Ring Research
Tree-Ring Research 农林科学-林学
CiteScore
2.40
自引率
12.50%
发文量
15
审稿时长
>36 weeks
期刊介绍: Tree-Ring Research (TRR) is devoted to papers dealing with the growth rings of trees and the applications of tree-ring research in a wide variety of fields, including but not limited to archaeology, geology, ecology, hydrology, climatology, forestry, and botany. Papers involving research results, new techniques of data acquisition or analysis, and regional or subject-oriented reviews or syntheses are considered for publication. Scientific papers usually fall into two main categories. Articles should not exceed 5000 words, or approximately 20 double-spaced typewritten pages, including tables, references, and an abstract of 200 words or fewer. All manuscripts submitted as Articles are reviewed by at least two referees. Research Reports, which are usually reviewed by at least one outside referee, should not exceed 1500 words or include more than two figures. Research Reports address technical developments, describe well-documented but preliminary research results, or present findings for which the Article format is not appropriate. Book or monograph Reviews of 500 words or less are also considered. Other categories of papers are occasionally published. All papers are published only in English. Abstracts of the Articles or Reports may be printed in other languages if supplied by the author(s) with English translations.
期刊最新文献
Tree-ring analysis of red spruce timbers from the Moosilauke Ravine Lodge, White Mountains, New Hampshire Precipitation reconstruction using tree-ring chronologies from Jordan and the Eastern Mediterranean Region Analysis of the Climate Signal in Subannual Width Measurements of Pinus nigra Tree Rings in Kastamonu Province, Turkey A Review of the Current State and Future Prospects of Dendrochronological Research in Bhutan A Case Study: Growth of Tree-Form Willow Driven by Cool, Wet Springs and Warm, Dry Summers in Teetł'it Zheh (Fort Mcpherson), Northwest Territories, Canada
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1