NodeRank:An Efficient Algorithm for Hardware/Software Partitioning

Q3 Computer Science 计算机学报 Pub Date : 2014-03-19 DOI:10.3724/SP.J.1016.2013.02033
Chen Zhi, W. Jigang, Song Guozhi, Chen Jinliang
{"title":"NodeRank:An Efficient Algorithm for Hardware/Software Partitioning","authors":"Chen Zhi, W. Jigang, Song Guozhi, Chen Jinliang","doi":"10.3724/SP.J.1016.2013.02033","DOIUrl":null,"url":null,"abstract":"Hardware/software(HW/SW)co-design is a key technique for the development of modern embedded systems.HW/SW partitioning is a crucial step in HW/SW co-design that determines which components of the computer system are implemented on hardware and which ones on software.In this paper,we present an efficient algorithm for hardware/software partitioning:NodeRank.Formulating the HW/SW partitioning problem as a variant of 0-1knapsack problem with dynamic communication costs,NodeRank iteratively calculates the rank of each node,updates the expectation of communication costs,and thus generates the corresponding heuristic solutions to the problem.Experimental results show that,when the computation cost and communication cost are roughly of equal weight and the real-time constraint is loose,NodeRank is inferior to the state-of-the-art Tabu Search method at most by 1.2%for task graphs with edge to node ratio equal or greater than 2,but saves more than 95% running time on average.For communication-intensive cases,NodeRank outperforms Tabu Search by up to 3.5% and saves runtime over 75%.","PeriodicalId":35776,"journal":{"name":"计算机学报","volume":"36 1","pages":"2033-2040"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"计算机学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.3724/SP.J.1016.2013.02033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 7

Abstract

Hardware/software(HW/SW)co-design is a key technique for the development of modern embedded systems.HW/SW partitioning is a crucial step in HW/SW co-design that determines which components of the computer system are implemented on hardware and which ones on software.In this paper,we present an efficient algorithm for hardware/software partitioning:NodeRank.Formulating the HW/SW partitioning problem as a variant of 0-1knapsack problem with dynamic communication costs,NodeRank iteratively calculates the rank of each node,updates the expectation of communication costs,and thus generates the corresponding heuristic solutions to the problem.Experimental results show that,when the computation cost and communication cost are roughly of equal weight and the real-time constraint is loose,NodeRank is inferior to the state-of-the-art Tabu Search method at most by 1.2%for task graphs with edge to node ratio equal or greater than 2,but saves more than 95% running time on average.For communication-intensive cases,NodeRank outperforms Tabu Search by up to 3.5% and saves runtime over 75%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NodeRank:一种高效的硬件/软件分区算法
硬件/软件协同设计是现代嵌入式系统开发的一项关键技术。硬件/软件分区是硬件/软件协同设计的关键步骤,它决定了计算机系统的哪些组件在硬件上实现,哪些组件在软件上实现。本文提出了一种高效的硬件/软件分区算法:NodeRank。NodeRank将硬件/软件分区问题描述为带有动态通信代价的0-1背包问题的变体,迭代计算每个节点的秩,更新通信代价的期望,从而生成问题的相应启发式解。实验结果表明,在计算成本和通信成本权重大致相等、实时性约束较松的情况下,对于边节点比大于等于2的任务图,NodeRank算法最多比禁忌搜索算法差1.2%,但平均节省95%以上的运行时间。对于通信密集型的情况,NodeRank的性能比禁忌搜索高出3.5%,节省运行时间超过75%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
计算机学报
计算机学报 Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
3.00
自引率
0.00%
发文量
7308
期刊介绍:
期刊最新文献
Survey of randomization defenses on cloud computing Predicate Execution-Sequence Based Fault Localization Algorithm p-order Normal Cloud Model Recursive Definition and Analysis of Bidirectional Cognitive Computing: p-order Normal Cloud Model Recursive Definition and Analysis of Bidirectional Cognitive Computing A Deadlock Prevention Policy Based on Complementary Places: A Deadlock Prevention Policy Based on Complementary Places An Efficient and Accurate Scheme for Computing the Fiedler Vector: An Efficient and Accurate Scheme for Computing the Fiedler Vector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1