Rigidity of a class of smooth singular flows on \begin{document}$ \mathbb{T}^2 $\end{document}

Pub Date : 2020-01-01 DOI:10.3934/jmd.2020002
Changguang Dong, Adam Kanigowski
{"title":"Rigidity of a class of smooth singular flows on \\begin{document}$ \\mathbb{T}^2 $\\end{document}","authors":"Changguang Dong, Adam Kanigowski","doi":"10.3934/jmd.2020002","DOIUrl":null,"url":null,"abstract":"We study joining rigidity in the class of von Neumann flows with one singularity. They are given by a smooth vector field \\begin{document}$ \\mathscr{X} $\\end{document} on \\begin{document}$ \\mathbb{T}^2\\setminus \\{a\\} $\\end{document} , where \\begin{document}$ \\mathscr{X} $\\end{document} is not defined at \\begin{document}$ a\\in \\mathbb{T}^2 $\\end{document} and \\begin{document}$ \\mathscr{X} $\\end{document} has one critical point which is a center. It follows that the phase space can be decomposed into a (topological disc) \\begin{document}$ D_\\mathscr{X} $\\end{document} and an ergodic component \\begin{document}$ E_\\mathscr{X} = \\mathbb{T}^2\\setminus D_\\mathscr{X} $\\end{document} . Let \\begin{document}$ \\omega_\\mathscr{X} $\\end{document} be the 1-form associated to \\begin{document}$ \\mathscr{X} $\\end{document} . We show that if \\begin{document}$ |\\int_{E_{\\mathscr{X}_1}}d\\omega_{\\mathscr{X}_1}|\\neq |\\int_{E_{\\mathscr{X}_2}}d\\omega_{\\mathscr{X}_2}| $\\end{document} , then the corresponding flows \\begin{document}$ (v_t^{\\mathscr{X}_1}) $\\end{document} and \\begin{document}$ (v_t^{\\mathscr{X}_2}) $\\end{document} are disjoint. It also follows that for every \\begin{document}$ \\mathscr{X} $\\end{document} there is a uniquely associated frequency \\begin{document}$ \\alpha = \\alpha_{\\mathscr{X}}\\in \\mathbb{T} $\\end{document} . We show that for a full measure set of \\begin{document}$ \\alpha\\in \\mathbb{T} $\\end{document} the class of smooth time changes of \\begin{document}$ (v_t^\\mathscr{X_ \\alpha}) $\\end{document} is joining rigid, i.e., every two smooth time changes are either cohomologous or disjoint. This gives a natural class of flows for which the answer to [ 15 ,Problem 3] is positive.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jmd.2020002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study joining rigidity in the class of von Neumann flows with one singularity. They are given by a smooth vector field \begin{document}$ \mathscr{X} $\end{document} on \begin{document}$ \mathbb{T}^2\setminus \{a\} $\end{document} , where \begin{document}$ \mathscr{X} $\end{document} is not defined at \begin{document}$ a\in \mathbb{T}^2 $\end{document} and \begin{document}$ \mathscr{X} $\end{document} has one critical point which is a center. It follows that the phase space can be decomposed into a (topological disc) \begin{document}$ D_\mathscr{X} $\end{document} and an ergodic component \begin{document}$ E_\mathscr{X} = \mathbb{T}^2\setminus D_\mathscr{X} $\end{document} . Let \begin{document}$ \omega_\mathscr{X} $\end{document} be the 1-form associated to \begin{document}$ \mathscr{X} $\end{document} . We show that if \begin{document}$ |\int_{E_{\mathscr{X}_1}}d\omega_{\mathscr{X}_1}|\neq |\int_{E_{\mathscr{X}_2}}d\omega_{\mathscr{X}_2}| $\end{document} , then the corresponding flows \begin{document}$ (v_t^{\mathscr{X}_1}) $\end{document} and \begin{document}$ (v_t^{\mathscr{X}_2}) $\end{document} are disjoint. It also follows that for every \begin{document}$ \mathscr{X} $\end{document} there is a uniquely associated frequency \begin{document}$ \alpha = \alpha_{\mathscr{X}}\in \mathbb{T} $\end{document} . We show that for a full measure set of \begin{document}$ \alpha\in \mathbb{T} $\end{document} the class of smooth time changes of \begin{document}$ (v_t^\mathscr{X_ \alpha}) $\end{document} is joining rigid, i.e., every two smooth time changes are either cohomologous or disjoint. This gives a natural class of flows for which the answer to [ 15 ,Problem 3] is positive.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Rigidity of a class of smooth singular flows on \begin{document}$ \mathbb{T}^2 $\end{document}
We study joining rigidity in the class of von Neumann flows with one singularity. They are given by a smooth vector field \begin{document}$ \mathscr{X} $\end{document} on \begin{document}$ \mathbb{T}^2\setminus \{a\} $\end{document} , where \begin{document}$ \mathscr{X} $\end{document} is not defined at \begin{document}$ a\in \mathbb{T}^2 $\end{document} and \begin{document}$ \mathscr{X} $\end{document} has one critical point which is a center. It follows that the phase space can be decomposed into a (topological disc) \begin{document}$ D_\mathscr{X} $\end{document} and an ergodic component \begin{document}$ E_\mathscr{X} = \mathbb{T}^2\setminus D_\mathscr{X} $\end{document} . Let \begin{document}$ \omega_\mathscr{X} $\end{document} be the 1-form associated to \begin{document}$ \mathscr{X} $\end{document} . We show that if \begin{document}$ |\int_{E_{\mathscr{X}_1}}d\omega_{\mathscr{X}_1}|\neq |\int_{E_{\mathscr{X}_2}}d\omega_{\mathscr{X}_2}| $\end{document} , then the corresponding flows \begin{document}$ (v_t^{\mathscr{X}_1}) $\end{document} and \begin{document}$ (v_t^{\mathscr{X}_2}) $\end{document} are disjoint. It also follows that for every \begin{document}$ \mathscr{X} $\end{document} there is a uniquely associated frequency \begin{document}$ \alpha = \alpha_{\mathscr{X}}\in \mathbb{T} $\end{document} . We show that for a full measure set of \begin{document}$ \alpha\in \mathbb{T} $\end{document} the class of smooth time changes of \begin{document}$ (v_t^\mathscr{X_ \alpha}) $\end{document} is joining rigid, i.e., every two smooth time changes are either cohomologous or disjoint. This gives a natural class of flows for which the answer to [ 15 ,Problem 3] is positive.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1