{"title":"Rigidity of a class of smooth singular flows on \\begin{document}$ \\mathbb{T}^2 $\\end{document}","authors":"Changguang Dong, Adam Kanigowski","doi":"10.3934/jmd.2020002","DOIUrl":null,"url":null,"abstract":"We study joining rigidity in the class of von Neumann flows with one singularity. They are given by a smooth vector field \\begin{document}$ \\mathscr{X} $\\end{document} on \\begin{document}$ \\mathbb{T}^2\\setminus \\{a\\} $\\end{document} , where \\begin{document}$ \\mathscr{X} $\\end{document} is not defined at \\begin{document}$ a\\in \\mathbb{T}^2 $\\end{document} and \\begin{document}$ \\mathscr{X} $\\end{document} has one critical point which is a center. It follows that the phase space can be decomposed into a (topological disc) \\begin{document}$ D_\\mathscr{X} $\\end{document} and an ergodic component \\begin{document}$ E_\\mathscr{X} = \\mathbb{T}^2\\setminus D_\\mathscr{X} $\\end{document} . Let \\begin{document}$ \\omega_\\mathscr{X} $\\end{document} be the 1-form associated to \\begin{document}$ \\mathscr{X} $\\end{document} . We show that if \\begin{document}$ |\\int_{E_{\\mathscr{X}_1}}d\\omega_{\\mathscr{X}_1}|\\neq |\\int_{E_{\\mathscr{X}_2}}d\\omega_{\\mathscr{X}_2}| $\\end{document} , then the corresponding flows \\begin{document}$ (v_t^{\\mathscr{X}_1}) $\\end{document} and \\begin{document}$ (v_t^{\\mathscr{X}_2}) $\\end{document} are disjoint. It also follows that for every \\begin{document}$ \\mathscr{X} $\\end{document} there is a uniquely associated frequency \\begin{document}$ \\alpha = \\alpha_{\\mathscr{X}}\\in \\mathbb{T} $\\end{document} . We show that for a full measure set of \\begin{document}$ \\alpha\\in \\mathbb{T} $\\end{document} the class of smooth time changes of \\begin{document}$ (v_t^\\mathscr{X_ \\alpha}) $\\end{document} is joining rigid, i.e., every two smooth time changes are either cohomologous or disjoint. This gives a natural class of flows for which the answer to [ 15 ,Problem 3] is positive.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jmd.2020002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We study joining rigidity in the class of von Neumann flows with one singularity. They are given by a smooth vector field \begin{document}$ \mathscr{X} $\end{document} on \begin{document}$ \mathbb{T}^2\setminus \{a\} $\end{document} , where \begin{document}$ \mathscr{X} $\end{document} is not defined at \begin{document}$ a\in \mathbb{T}^2 $\end{document} and \begin{document}$ \mathscr{X} $\end{document} has one critical point which is a center. It follows that the phase space can be decomposed into a (topological disc) \begin{document}$ D_\mathscr{X} $\end{document} and an ergodic component \begin{document}$ E_\mathscr{X} = \mathbb{T}^2\setminus D_\mathscr{X} $\end{document} . Let \begin{document}$ \omega_\mathscr{X} $\end{document} be the 1-form associated to \begin{document}$ \mathscr{X} $\end{document} . We show that if \begin{document}$ |\int_{E_{\mathscr{X}_1}}d\omega_{\mathscr{X}_1}|\neq |\int_{E_{\mathscr{X}_2}}d\omega_{\mathscr{X}_2}| $\end{document} , then the corresponding flows \begin{document}$ (v_t^{\mathscr{X}_1}) $\end{document} and \begin{document}$ (v_t^{\mathscr{X}_2}) $\end{document} are disjoint. It also follows that for every \begin{document}$ \mathscr{X} $\end{document} there is a uniquely associated frequency \begin{document}$ \alpha = \alpha_{\mathscr{X}}\in \mathbb{T} $\end{document} . We show that for a full measure set of \begin{document}$ \alpha\in \mathbb{T} $\end{document} the class of smooth time changes of \begin{document}$ (v_t^\mathscr{X_ \alpha}) $\end{document} is joining rigid, i.e., every two smooth time changes are either cohomologous or disjoint. This gives a natural class of flows for which the answer to [ 15 ,Problem 3] is positive.
Rigidity of a class of smooth singular flows on \begin{document}$ \mathbb{T}^2 $\end{document}
We study joining rigidity in the class of von Neumann flows with one singularity. They are given by a smooth vector field \begin{document}$ \mathscr{X} $\end{document} on \begin{document}$ \mathbb{T}^2\setminus \{a\} $\end{document} , where \begin{document}$ \mathscr{X} $\end{document} is not defined at \begin{document}$ a\in \mathbb{T}^2 $\end{document} and \begin{document}$ \mathscr{X} $\end{document} has one critical point which is a center. It follows that the phase space can be decomposed into a (topological disc) \begin{document}$ D_\mathscr{X} $\end{document} and an ergodic component \begin{document}$ E_\mathscr{X} = \mathbb{T}^2\setminus D_\mathscr{X} $\end{document} . Let \begin{document}$ \omega_\mathscr{X} $\end{document} be the 1-form associated to \begin{document}$ \mathscr{X} $\end{document} . We show that if \begin{document}$ |\int_{E_{\mathscr{X}_1}}d\omega_{\mathscr{X}_1}|\neq |\int_{E_{\mathscr{X}_2}}d\omega_{\mathscr{X}_2}| $\end{document} , then the corresponding flows \begin{document}$ (v_t^{\mathscr{X}_1}) $\end{document} and \begin{document}$ (v_t^{\mathscr{X}_2}) $\end{document} are disjoint. It also follows that for every \begin{document}$ \mathscr{X} $\end{document} there is a uniquely associated frequency \begin{document}$ \alpha = \alpha_{\mathscr{X}}\in \mathbb{T} $\end{document} . We show that for a full measure set of \begin{document}$ \alpha\in \mathbb{T} $\end{document} the class of smooth time changes of \begin{document}$ (v_t^\mathscr{X_ \alpha}) $\end{document} is joining rigid, i.e., every two smooth time changes are either cohomologous or disjoint. This gives a natural class of flows for which the answer to [ 15 ,Problem 3] is positive.