A stochastic computational scheme for the computer epidemic virus with delay effects

IF 1.8 3区 数学 Q1 MATHEMATICS AIMS Mathematics Pub Date : 2023-01-01 DOI:10.3934/math.2023007
W. Weera, T. Botmart, T. La-inchua, Z. Sabir, R. Núñez, M. Abukhaled, J. L. Guirao
{"title":"A stochastic computational scheme for the computer epidemic virus with delay effects","authors":"W. Weera, T. Botmart, T. La-inchua, Z. Sabir, R. Núñez, M. Abukhaled, J. L. Guirao","doi":"10.3934/math.2023007","DOIUrl":null,"url":null,"abstract":"<abstract> <p>This work aims to provide the numerical performances of the computer epidemic virus model with the time delay effects using the stochastic Levenberg-Marquardt backpropagation neural networks (LMBP-NNs). The computer epidemic virus model with the time delay effects is categorized into four dynamics, the uninfected <italic>S</italic>(<italic>x</italic>) computers, the latently infected <italic>L</italic>(<italic>x</italic>) computers, the breaking-out <italic>B</italic>(<italic>x</italic>) computers, and the antivirus PC's aptitude <italic>R</italic>(<italic>x</italic>). The LMBP-NNs approach has been used to numerically simulate three cases of the computer virus epidemic system with delay effects. The stochastic framework for the computer epidemic virus system with the time delay effects is provided using the selection of data with 11%, 13%, and 76% for testing, training, and verification together with 15 neurons. The proposed and data-based Adam technique is overlapped to execute the LMBP-NNs method's exactness. The constancy, authentication, precision, and capability of the LMBP-NNs scheme are perceived with the analysis of the state transition measures, regression actions, correlation performances, error histograms, and mean square error measures.</p> </abstract>","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/math.2023007","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

Abstract

This work aims to provide the numerical performances of the computer epidemic virus model with the time delay effects using the stochastic Levenberg-Marquardt backpropagation neural networks (LMBP-NNs). The computer epidemic virus model with the time delay effects is categorized into four dynamics, the uninfected S(x) computers, the latently infected L(x) computers, the breaking-out B(x) computers, and the antivirus PC's aptitude R(x). The LMBP-NNs approach has been used to numerically simulate three cases of the computer virus epidemic system with delay effects. The stochastic framework for the computer epidemic virus system with the time delay effects is provided using the selection of data with 11%, 13%, and 76% for testing, training, and verification together with 15 neurons. The proposed and data-based Adam technique is overlapped to execute the LMBP-NNs method's exactness. The constancy, authentication, precision, and capability of the LMBP-NNs scheme are perceived with the analysis of the state transition measures, regression actions, correlation performances, error histograms, and mean square error measures.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有延迟效应的计算机流行病毒随机计算方案
本工作旨在利用随机Levenberg-Marquardt反向传播神经网络(LMBP-NNs)提供具有时间延迟效应的计算机流行病毒模型的数值性能。将具有时滞效应的计算机流行病毒模型分为未感染的S(x)计算机、潜伏感染的L(x)计算机、爆发的B(x)计算机和防病毒PC的aptitude R(x)四种动态。利用lmbp - nn方法对三种具有延迟效应的计算机病毒流行系统进行了数值模拟。采用11%、13%和76%的数据选择,结合15个神经元,给出了具有时滞效应的计算机流行病病毒系统的随机框架进行测试、训练和验证。将该方法与基于数据的Adam技术相结合,实现了LMBP-NNs方法的准确性。通过分析状态转移度量、回归行为、相关性能、误差直方图和均方误差度量,可以感知lmbp - nn方案的稳定性、认证性、精度和能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AIMS Mathematics
AIMS Mathematics Mathematics-General Mathematics
CiteScore
3.40
自引率
13.60%
发文量
769
审稿时长
90 days
期刊介绍: AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.
期刊最新文献
Stability of nonlinear population systems with individual scale and migration A stochastic computational scheme for the computer epidemic virus with delay effects A new family of hybrid three-term conjugate gradient method for unconstrained optimization with application to image restoration and portfolio selection Heat transport and magnetohydrodynamic hybrid micropolar ferrofluid flow over a non-linearly stretching sheet Computational analysis of fractional modified Degasperis-Procesi equation with Caputo-Katugampola derivative
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1