Adaptive estimation for spatially varying coefficient models

IF 1.8 3区 数学 Q1 MATHEMATICS AIMS Mathematics Pub Date : 2023-01-01 DOI:10.3934/math.2023713
Heng Liu, Xia Cui
{"title":"Adaptive estimation for spatially varying coefficient models","authors":"Heng Liu, Xia Cui","doi":"10.3934/math.2023713","DOIUrl":null,"url":null,"abstract":"In this paper, a new adaptive estimation approach is proposed for the spatially varying coefficient models with unknown error distribution, unlike geographically weighted regression (GWR) and local linear geographically weighted regression (LL), this method can adapt to different error distributions. A generalized Modal EM algorithm is presented to implement the estimation, and the asymptotic property of the estimator is established. Simulation and real data results show that the gain of the new adaptive method over the GWR and LL estimation is considerable for the error of non-Gaussian distributions.","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/math.2023713","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a new adaptive estimation approach is proposed for the spatially varying coefficient models with unknown error distribution, unlike geographically weighted regression (GWR) and local linear geographically weighted regression (LL), this method can adapt to different error distributions. A generalized Modal EM algorithm is presented to implement the estimation, and the asymptotic property of the estimator is established. Simulation and real data results show that the gain of the new adaptive method over the GWR and LL estimation is considerable for the error of non-Gaussian distributions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
空间变系数模型的自适应估计
本文针对误差分布未知的空间变系数模型,提出了一种新的自适应估计方法,不同于地理加权回归(GWR)和局部线性地理加权回归(LL),该方法可以适应不同的误差分布。提出了一种广义模态EM算法来实现估计,并证明了估计量的渐近性。仿真和实际数据结果表明,对于非高斯分布的误差,该自适应方法比GWR和LL估计有相当大的增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AIMS Mathematics
AIMS Mathematics Mathematics-General Mathematics
CiteScore
3.40
自引率
13.60%
发文量
769
审稿时长
90 days
期刊介绍: AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.
期刊最新文献
A note on equivalent conditions for majorization The conjugacy diameters of non-abelian finite $ p $-groups with cyclic maximal subgroups $ \mathcal{N} = 2 $ double graded supersymmetric quantum mechanics via dimensional reduction Efficient numerical approaches with accelerated graphics processing unit (GPU) computations for Poisson problems and Cahn-Hilliard equations. Stability of nonlinear population systems with individual scale and migration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1