Wuhua Jiang, Yuexin Zhang, Jie Liu, Daisheng Zhang, Y. Yan, Chuanzheng Song
{"title":"Multi-objective optimization design for steel-aluminum lightweight body of pure electric bus based on RBF model and genetic algorithm","authors":"Wuhua Jiang, Yuexin Zhang, Jie Liu, Daisheng Zhang, Y. Yan, Chuanzheng Song","doi":"10.3934/era.2023102","DOIUrl":null,"url":null,"abstract":"In order to solve the problem of insufficient range caused by the excessive weight of the pure electric bus, a multi-objective genetic algorithm (GA) and radial basis function (RBF) model are combined in this paper to realize the lightweighting of steel and aluminum hybrid body of the pure electric bus. First, the upper and lower frames of the pure electric bus body are initially designed with aluminum alloy and steel materials respectively to meet the lightweight requirements. Second, a finite element (FE) model of the bus body is established, and the validity of the model is validated through physical tests. Then, the sensitivity analysis is performed to identify the relative importance of individual design parameters over the entire domain. The Hamosilei sampling method is selected for the design of the experiment (DOE) because users can specify the number of experiments and ensure that the set of random numbers is a good representative of real variability, and the RBF model is adopted to approximate the responses of objectives and constraints. Finally, the multi-objective optimization (MOO) method based on GA with RBF model is used to solve the optimization problem of the lightweight steel-aluminum hybrid bus body. The results show that compared with the traditional fully steel body, the use of the aluminum alloy lower-frame structure can reduce body mass by 38.4%, and the proposed optimization method can further reduce the mass of the steel-aluminum body to 4.28% without affecting the structural stiffness and strength performance of the body.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/era.2023102","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In order to solve the problem of insufficient range caused by the excessive weight of the pure electric bus, a multi-objective genetic algorithm (GA) and radial basis function (RBF) model are combined in this paper to realize the lightweighting of steel and aluminum hybrid body of the pure electric bus. First, the upper and lower frames of the pure electric bus body are initially designed with aluminum alloy and steel materials respectively to meet the lightweight requirements. Second, a finite element (FE) model of the bus body is established, and the validity of the model is validated through physical tests. Then, the sensitivity analysis is performed to identify the relative importance of individual design parameters over the entire domain. The Hamosilei sampling method is selected for the design of the experiment (DOE) because users can specify the number of experiments and ensure that the set of random numbers is a good representative of real variability, and the RBF model is adopted to approximate the responses of objectives and constraints. Finally, the multi-objective optimization (MOO) method based on GA with RBF model is used to solve the optimization problem of the lightweight steel-aluminum hybrid bus body. The results show that compared with the traditional fully steel body, the use of the aluminum alloy lower-frame structure can reduce body mass by 38.4%, and the proposed optimization method can further reduce the mass of the steel-aluminum body to 4.28% without affecting the structural stiffness and strength performance of the body.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.