Age estimation algorithm based on deep learning and its application in fall detection

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-01-01 DOI:10.3934/era.2023251
Jiayi Yu, Ye Tao, Huang Zhang, Zhibiao Wang, Wenhua Cui, Tianwei Shi
{"title":"Age estimation algorithm based on deep learning and its application in fall detection","authors":"Jiayi Yu, Ye Tao, Huang Zhang, Zhibiao Wang, Wenhua Cui, Tianwei Shi","doi":"10.3934/era.2023251","DOIUrl":null,"url":null,"abstract":"With the continuous development and progress of society, age estimation based on deep learning has gradually become a key link in human-computer interaction. Widely combined with other fields of application, this paper performs a gradient division of human fall behavior according to the age estimation of the human body, a complete priority detection of the key population, and a phased single aggregation backbone network VoVNetv4 was proposed for feature extraction. At the same time, the regional single aggregation module ROSA module was constructed to encapsulate the feature module regionally. The adaptive stage module was used for feature smoothing. Consistent predictions for each task were made using the CORAL framework as a classifier and tasks were divided in binary. At the same time, a gradient two-node fall detection framework combined with age estimation was designed. The detection was divided into a primary node and a secondary node. In the first-level node, the age estimation algorithm based on VoVNetv4 was used to classify the population of different age groups. A face tracking algorithm was constructed by combining the key point matrices of humans, and the body processed by OpenPose with the central coordinates of the human face. In the secondary node, human age gradient information was used to detect human falls based on the AT-MLP model. The experimental results show that compared with Resnet-34, the MAE value of the proposed method decreased by 0.41. Compared with curriculum learning and the CORAL-CNN method, MAE value decreased by 0.17 relative to the RMSE value. Compared with other methods, the method in this paper was significantly lower, with a biggest drop of 0.51.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/era.2023251","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

With the continuous development and progress of society, age estimation based on deep learning has gradually become a key link in human-computer interaction. Widely combined with other fields of application, this paper performs a gradient division of human fall behavior according to the age estimation of the human body, a complete priority detection of the key population, and a phased single aggregation backbone network VoVNetv4 was proposed for feature extraction. At the same time, the regional single aggregation module ROSA module was constructed to encapsulate the feature module regionally. The adaptive stage module was used for feature smoothing. Consistent predictions for each task were made using the CORAL framework as a classifier and tasks were divided in binary. At the same time, a gradient two-node fall detection framework combined with age estimation was designed. The detection was divided into a primary node and a secondary node. In the first-level node, the age estimation algorithm based on VoVNetv4 was used to classify the population of different age groups. A face tracking algorithm was constructed by combining the key point matrices of humans, and the body processed by OpenPose with the central coordinates of the human face. In the secondary node, human age gradient information was used to detect human falls based on the AT-MLP model. The experimental results show that compared with Resnet-34, the MAE value of the proposed method decreased by 0.41. Compared with curriculum learning and the CORAL-CNN method, MAE value decreased by 0.17 relative to the RMSE value. Compared with other methods, the method in this paper was significantly lower, with a biggest drop of 0.51.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的年龄估计算法及其在跌倒检测中的应用
随着社会的不断发展和进步,基于深度学习的年龄估计逐渐成为人机交互的关键环节。本文广泛结合其他应用领域,根据人体年龄估计对人体跌倒行为进行梯度划分,对关键人群进行完整的优先级检测,提出了分阶段的单聚合骨干网VoVNetv4进行特征提取。同时,构建区域单聚合模块ROSA模块,对特征模块进行区域封装。采用自适应阶段模块进行特征平滑。使用CORAL框架作为分类器对每个任务进行一致的预测,并将任务分为二值。同时,设计了一种结合年龄估计的梯度双节点跌倒检测框架。检测分为主节点和次节点。在第一级节点,使用基于VoVNetv4的年龄估计算法对不同年龄组的人群进行分类。将人体关键点矩阵与OpenPose处理的人体与人脸中心坐标相结合,构建人脸跟踪算法。在次要节点,基于AT-MLP模型,利用人类年龄梯度信息检测人类跌倒。实验结果表明,与Resnet-34相比,该方法的MAE值降低了0.41。与课程学习和CORAL-CNN方法相比,MAE值相对RMSE值降低了0.17。与其他方法相比,本文方法显著降低,最大降幅为0.51。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1