Accelerating Metropolis-Hastings algorithms by Delayed Acceptance

IF 1.7 Q2 MATHEMATICS, APPLIED Foundations of data science (Springfield, Mo.) Pub Date : 2015-03-03 DOI:10.3934/FODS.2019005
Marco Banterle, C. Grazian, Anthony Lee, C. Robert
{"title":"Accelerating Metropolis-Hastings algorithms by Delayed Acceptance","authors":"Marco Banterle, C. Grazian, Anthony Lee, C. Robert","doi":"10.3934/FODS.2019005","DOIUrl":null,"url":null,"abstract":"MCMC algorithms such as Metropolis-Hastings algorithms are slowed down by the computation of complex target distributions as exemplified by huge datasets. We offer in this paper a useful generalisation of the Delayed Acceptance approach, devised to reduce the computational costs of such algorithms by a simple and universal divide-and-conquer strategy. The idea behind the generic acceleration is to divide the acceptance step into several parts, aiming at a major reduction in computing time that out-ranks the corresponding reduction in acceptance probability. Each of the components can be sequentially compared with a uniform variate, the first rejection signalling that the proposed value is considered no further. We develop moreover theoretical bounds for the variance of associated estimators with respect to the variance of the standard Metropolis-Hastings and detail some results on optimal scaling and general optimisation of the procedure. We illustrate those accelerating features on a series of examples","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":"1 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2015-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of data science (Springfield, Mo.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/FODS.2019005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 50

Abstract

MCMC algorithms such as Metropolis-Hastings algorithms are slowed down by the computation of complex target distributions as exemplified by huge datasets. We offer in this paper a useful generalisation of the Delayed Acceptance approach, devised to reduce the computational costs of such algorithms by a simple and universal divide-and-conquer strategy. The idea behind the generic acceleration is to divide the acceptance step into several parts, aiming at a major reduction in computing time that out-ranks the corresponding reduction in acceptance probability. Each of the components can be sequentially compared with a uniform variate, the first rejection signalling that the proposed value is considered no further. We develop moreover theoretical bounds for the variance of associated estimators with respect to the variance of the standard Metropolis-Hastings and detail some results on optimal scaling and general optimisation of the procedure. We illustrate those accelerating features on a series of examples
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
延迟接受加速Metropolis-Hastings算法
以大型数据集为例,Metropolis-Hastings算法等MCMC算法由于计算复杂的目标分布而速度变慢。我们在本文中提供了延迟接受方法的一个有用的推广,旨在通过一个简单而通用的分治策略来降低此类算法的计算成本。通用加速背后的思想是将验收步骤分成几个部分,旨在大大减少计算时间,从而超过相应的验收概率减少。每个组成部分可以依次与一个统一的变量进行比较,第一次拒绝表明建议的值不再被考虑。此外,我们还根据标准Metropolis-Hastings的方差给出了相关估计量方差的理论界限,并详细介绍了该过程的最优标度和一般优化的一些结果。我们通过一系列示例来说明这些加速特性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
0
期刊最新文献
CHATGPT FOR COMPUTATIONAL TOPOLOGY. PERSISTENT DIRAC OF PATHS ON DIGRAPHS AND HYPERGRAPHS. PERSISTENT PATH LAPLACIAN. Weight set decomposition for weighted rank and rating aggregation: An interpretable and visual decision support tool Hierarchical regularization networks for sparsification based learning on noisy datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1