Randomized learning of the second-moment matrix of a smooth function

IF 1.7 Q2 MATHEMATICS, APPLIED Foundations of data science (Springfield, Mo.) Pub Date : 2016-12-19 DOI:10.3934/fods.2019015
Armin Eftekhari, M. Wakin, Ping Li, P. Constantine
{"title":"Randomized learning of the second-moment matrix of a smooth function","authors":"Armin Eftekhari, M. Wakin, Ping Li, P. Constantine","doi":"10.3934/fods.2019015","DOIUrl":null,"url":null,"abstract":"Consider an open set $\\mathbb{D}\\subseteq\\mathbb{R}^n$, equipped with a probability measure $\\mu$. An important characteristic of a smooth function $f:\\mathbb{D}\\rightarrow\\mathbb{R}$ is its \\emph{second-moment matrix} $\\Sigma_{\\mu}:=\\int \\nabla f(x) \\nabla f(x)^* \\mu(dx) \\in\\mathbb{R}^{n\\times n}$, where $\\nabla f(x)\\in\\mathbb{R}^n$ is the gradient of $f(\\cdot)$ at $x\\in\\mathbb{D}$ and $*$ stands for transpose. For instance, the span of the leading $r$ eigenvectors of $\\Sigma_{\\mu}$ forms an \\emph{active subspace} of $f(\\cdot)$, which contains the directions along which $f(\\cdot)$ changes the most and is of particular interest in \\emph{ridge approximation}. In this work, we propose a simple algorithm for estimating $\\Sigma_{\\mu}$ from random point evaluations of $f(\\cdot)$ \\emph{without} imposing any structural assumptions on $\\Sigma_{\\mu}$. Theoretical guarantees for this algorithm are established with the aid of the same technical tools that have proved valuable in the context of covariance matrix estimation from partial measurements.","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":"1 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2016-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of data science (Springfield, Mo.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/fods.2019015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4

Abstract

Consider an open set $\mathbb{D}\subseteq\mathbb{R}^n$, equipped with a probability measure $\mu$. An important characteristic of a smooth function $f:\mathbb{D}\rightarrow\mathbb{R}$ is its \emph{second-moment matrix} $\Sigma_{\mu}:=\int \nabla f(x) \nabla f(x)^* \mu(dx) \in\mathbb{R}^{n\times n}$, where $\nabla f(x)\in\mathbb{R}^n$ is the gradient of $f(\cdot)$ at $x\in\mathbb{D}$ and $*$ stands for transpose. For instance, the span of the leading $r$ eigenvectors of $\Sigma_{\mu}$ forms an \emph{active subspace} of $f(\cdot)$, which contains the directions along which $f(\cdot)$ changes the most and is of particular interest in \emph{ridge approximation}. In this work, we propose a simple algorithm for estimating $\Sigma_{\mu}$ from random point evaluations of $f(\cdot)$ \emph{without} imposing any structural assumptions on $\Sigma_{\mu}$. Theoretical guarantees for this algorithm are established with the aid of the same technical tools that have proved valuable in the context of covariance matrix estimation from partial measurements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光滑函数二阶矩阵的随机学习
考虑一个开放集$\mathbb{D}\subseteq\mathbb{R}^n$,配备一个概率度量$\mu$。光滑函数$f:\mathbb{D}\rightarrow\mathbb{R}$的一个重要特征是它的\emph{二阶矩矩阵}$\Sigma_{\mu}:=\int \nabla f(x) \nabla f(x)^* \mu(dx) \in\mathbb{R}^{n\times n}$,其中$\nabla f(x)\in\mathbb{R}^n$是$f(\cdot)$在$x\in\mathbb{D}$处的梯度,$*$表示转置。例如,$\Sigma_{\mu}$的主要$r$特征向量的跨度形成$f(\cdot)$的\emph{活动子空间},其中包含$f(\cdot)$变化最大的方向,并且在\emph{脊近似}中特别感兴趣。在这项工作中,我们提出了一种简单的算法,可以从$f(\cdot)$的随机点评估中估计$\Sigma_{\mu}$\emph{,而不}需要对$\Sigma_{\mu}$施加任何结构假设。该算法的理论保证是借助相同的技术工具建立的,这些技术工具在部分测量的协方差矩阵估计的背景下被证明是有价值的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
0
期刊最新文献
CHATGPT FOR COMPUTATIONAL TOPOLOGY. PERSISTENT DIRAC OF PATHS ON DIGRAPHS AND HYPERGRAPHS. PERSISTENT PATH LAPLACIAN. Weight set decomposition for weighted rank and rating aggregation: An interpretable and visual decision support tool Hierarchical regularization networks for sparsification based learning on noisy datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1