{"title":"Context-dependent interplay between Hippo and JNK pathway in Drosophila","authors":"Xianjue Ma","doi":"10.3934/genet.2014.1.20","DOIUrl":null,"url":null,"abstract":"Abstract Both Hippo and JNK signaling have well-established roles in regulating many physiological processes, including cell proliferation, growth, survival, and migration. An increasing body of evidence shows that dysregulation of either Hippo or JNK pathway would lead to tumorigenesis. Recently, studies in Drosophila has coupled Hippo with JNK pathway in numerous ways ranging from tissue regeneration to growth control. In this review, I provide an overview of the current understanding of crosstalk between Hippo and JNK pathway in Drosophila, and discuss their context-dependent interactions in gut homeostasis, regeneration, cell competition and migration.","PeriodicalId":43477,"journal":{"name":"AIMS Genetics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/genet.2014.1.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Abstract Both Hippo and JNK signaling have well-established roles in regulating many physiological processes, including cell proliferation, growth, survival, and migration. An increasing body of evidence shows that dysregulation of either Hippo or JNK pathway would lead to tumorigenesis. Recently, studies in Drosophila has coupled Hippo with JNK pathway in numerous ways ranging from tissue regeneration to growth control. In this review, I provide an overview of the current understanding of crosstalk between Hippo and JNK pathway in Drosophila, and discuss their context-dependent interactions in gut homeostasis, regeneration, cell competition and migration.