Sheng-Lun Lin, Hongjie Zhang, M. Lin, Shih-Wei Huang
{"title":"The Unignorable Near-ground PM2.5, UFP, PAHs, and BC Levels around a Traffic Prohibited Night Market","authors":"Sheng-Lun Lin, Hongjie Zhang, M. Lin, Shih-Wei Huang","doi":"10.4209/aaqr.220331","DOIUrl":null,"url":null,"abstract":"In some special densely populated areas, the background atmospheric fine particulate matter (PM 2.5 ) concentration is very high, which makes near-ground (NG) exposure a major problem endangering human health. In our study, the night market in Chiayi City was selected as the research object and collected the 24-hour PM 2.5 samples through the federal reference method (FRM), characterizing the mass concentration, water-soluble ionic components, carbon specious, metal compositions and source contributions of PM 2.5 . To better analyze the contribution of traffic sources under different sampling conditions, the mobile real-time monitoring system was used to analyze the quality of NG-PM 2.5 , the number of ultra-fine particles (UFP), the concentration of black carbon (BC) and total polycyclic aromatic hydrocarbons (PAH) before and after the traffic restriction. Results indicated the concentration of PM 2.5 was 7.26 – 58.6 mg m – 3 . In chemical analysis, secondary contents e.g., carbonaceous and ionic components accounted for ~ 60% of the PM 2.5 , supporting the importance of long-range transport. However, the traffic contribution accounted for ~ 30% and hardly changed between different samples, which was not conducive to source apportionment. Through traffic restriction, it was found that all kinds of pollutants increased significantly before restriction, and even after restriction, the concentrations of PM 2.5 and BC increased 131% and 151% in low concentration season. In the high concentration season, the traffic restriction significantly reduced the NG-UFP and NG-PAH concentration by 27% and 55%, respectively, but NG-BC and NG-PM 2.5 was almost unaffected. Therefore, besides the contribution of traffic source, emissions from cooking activities are very important for the increase of NG-PM 2.5 levels in the night market area.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerosol and Air Quality Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.4209/aaqr.220331","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
In some special densely populated areas, the background atmospheric fine particulate matter (PM 2.5 ) concentration is very high, which makes near-ground (NG) exposure a major problem endangering human health. In our study, the night market in Chiayi City was selected as the research object and collected the 24-hour PM 2.5 samples through the federal reference method (FRM), characterizing the mass concentration, water-soluble ionic components, carbon specious, metal compositions and source contributions of PM 2.5 . To better analyze the contribution of traffic sources under different sampling conditions, the mobile real-time monitoring system was used to analyze the quality of NG-PM 2.5 , the number of ultra-fine particles (UFP), the concentration of black carbon (BC) and total polycyclic aromatic hydrocarbons (PAH) before and after the traffic restriction. Results indicated the concentration of PM 2.5 was 7.26 – 58.6 mg m – 3 . In chemical analysis, secondary contents e.g., carbonaceous and ionic components accounted for ~ 60% of the PM 2.5 , supporting the importance of long-range transport. However, the traffic contribution accounted for ~ 30% and hardly changed between different samples, which was not conducive to source apportionment. Through traffic restriction, it was found that all kinds of pollutants increased significantly before restriction, and even after restriction, the concentrations of PM 2.5 and BC increased 131% and 151% in low concentration season. In the high concentration season, the traffic restriction significantly reduced the NG-UFP and NG-PAH concentration by 27% and 55%, respectively, but NG-BC and NG-PM 2.5 was almost unaffected. Therefore, besides the contribution of traffic source, emissions from cooking activities are very important for the increase of NG-PM 2.5 levels in the night market area.
期刊介绍:
The international journal of Aerosol and Air Quality Research (AAQR) covers all aspects of aerosol science and technology, atmospheric science and air quality related issues. It encompasses a multi-disciplinary field, including:
- Aerosol, air quality, atmospheric chemistry and global change;
- Air toxics (hazardous air pollutants (HAPs), persistent organic pollutants (POPs)) - Sources, control, transport and fate, human exposure;
- Nanoparticle and nanotechnology;
- Sources, combustion, thermal decomposition, emission, properties, behavior, formation, transport, deposition, measurement and analysis;
- Effects on the environments;
- Air quality and human health;
- Bioaerosols;
- Indoor air quality;
- Energy and air pollution;
- Pollution control technologies;
- Invention and improvement of sampling instruments and technologies;
- Optical/radiative properties and remote sensing;
- Carbon dioxide emission, capture, storage and utilization; novel methods for the reduction of carbon dioxide emission;
- Other topics related to aerosol and air quality.