Xiong Yang, Haotu Zhong, Ying-shu Liu, Ning Sun, Ruixing Kuang, Cong Wang, Antao Zhan, Junrong Zhang, Qiming Tang, Ziyi Li
{"title":"Progress in Adsorptive Removal of Volatile Organic Compounds by Zeolites","authors":"Xiong Yang, Haotu Zhong, Ying-shu Liu, Ning Sun, Ruixing Kuang, Cong Wang, Antao Zhan, Junrong Zhang, Qiming Tang, Ziyi Li","doi":"10.4209/aaqr.220442","DOIUrl":null,"url":null,"abstract":"Volatile Organic Compounds (VOCs) are a class of pollutants that have recently received much attention in atmospheric and indoor air pollution problems. They are precursors for PM 2.5 and ozone generation. The removal of VOCs emitted from exhaust gases is an urgent problem to solve air pollution. Adsorption is one of the most promising VOC abatement technologies, with the advantages of high purification efficiency, low cost, and simple equipment. The adsorbent plays a critical role in VOCs removal efficiency. Zeolite is a rapidly developing material due to its highly ordered and flexible microporous structure, good stability, and abundant surface modification. In this paper, the influence of zeolite properties, including framework structure, pore properties, and surface cations, on VOCs adsorption performance is analyzed. The VOCs adsorption performance on different zeolite adsorbents in the presence of water vapor is compared. The influential factors on the mass transfer kinetic properties of VOCs adsorption are summarized. Finally, an overview of zeolite honeycomb adsorbent applications for industrial use is presented, including multi-tower fixed bed adsorption and zeolite rotor adsorption.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerosol and Air Quality Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.4209/aaqr.220442","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Volatile Organic Compounds (VOCs) are a class of pollutants that have recently received much attention in atmospheric and indoor air pollution problems. They are precursors for PM 2.5 and ozone generation. The removal of VOCs emitted from exhaust gases is an urgent problem to solve air pollution. Adsorption is one of the most promising VOC abatement technologies, with the advantages of high purification efficiency, low cost, and simple equipment. The adsorbent plays a critical role in VOCs removal efficiency. Zeolite is a rapidly developing material due to its highly ordered and flexible microporous structure, good stability, and abundant surface modification. In this paper, the influence of zeolite properties, including framework structure, pore properties, and surface cations, on VOCs adsorption performance is analyzed. The VOCs adsorption performance on different zeolite adsorbents in the presence of water vapor is compared. The influential factors on the mass transfer kinetic properties of VOCs adsorption are summarized. Finally, an overview of zeolite honeycomb adsorbent applications for industrial use is presented, including multi-tower fixed bed adsorption and zeolite rotor adsorption.
期刊介绍:
The international journal of Aerosol and Air Quality Research (AAQR) covers all aspects of aerosol science and technology, atmospheric science and air quality related issues. It encompasses a multi-disciplinary field, including:
- Aerosol, air quality, atmospheric chemistry and global change;
- Air toxics (hazardous air pollutants (HAPs), persistent organic pollutants (POPs)) - Sources, control, transport and fate, human exposure;
- Nanoparticle and nanotechnology;
- Sources, combustion, thermal decomposition, emission, properties, behavior, formation, transport, deposition, measurement and analysis;
- Effects on the environments;
- Air quality and human health;
- Bioaerosols;
- Indoor air quality;
- Energy and air pollution;
- Pollution control technologies;
- Invention and improvement of sampling instruments and technologies;
- Optical/radiative properties and remote sensing;
- Carbon dioxide emission, capture, storage and utilization; novel methods for the reduction of carbon dioxide emission;
- Other topics related to aerosol and air quality.