Austin Close, Jane Blackerby, Heather Tunnell, Jack Pender, Eric Soule, Sinan Sousan
{"title":"Effects of E-Cigarette Liquid Ratios on the Gravimetric Filter Correction Factors and Real-Time Measurements.","authors":"Austin Close, Jane Blackerby, Heather Tunnell, Jack Pender, Eric Soule, Sinan Sousan","doi":"10.4209/aaqr.230011","DOIUrl":null,"url":null,"abstract":"<p><p>Electronic cigarettes (ECIGs) generate high concentrations of particulate matter (PM), impacting the air quality inhaled by humans through secondhand exposure. ECIG liquids are available commercially and some users create their own \"do-it-yourself\" liquids, and these liquids often vary in the amounts of their chemical ingredients, including propylene glycol (PG) and vegetable glycerin (VG). Previous studies have quantified PM concentrations in ECIG aerosol generated from liquids containing different PG/VG ratios. However, the effects of these ratios on aerosol instrument filter correction factors needed to measure PM concentrations accurately have not been assessed. Thus, ECIG aerosol filter correction factors for multiple aerosol instruments (SMPS + APS, MiniWRAS, pDR, and SidePak) were determined for five different PG/VG ratios 1) 0PG/100VG, 2) 15PG/85VG, 3) 50PG/50VG, 4) 72PG/28VG, and 5) 90PG/10VG and two different PM sizes, PM<sub>1</sub> (1 μm and smaller) and PM<sub>2.5</sub> (2.5 μm and smaller). ECIG aerosols were generated inside a controlled exposure chamber using a diaphragm pump and a refillable ECIG device for all the ratios. In addition, the aerosol size distribution and mass median diameter were measured for all five ECIG ratios. PM<sub>2.5</sub> correction factors (5-7.6) for ratios 1, 2, 3, and 4 were similar for the SMPS + APS combined data, and ratios 1, 2, 3 were similar for the MiniWRAS (~2), pDR (~0.5), and SidePak (~0.24). These data suggest different correction factors may need to be developed for aerosol generated from ECIGs with high PG content. The higher correction factor values for the 90PG/10VG ratio may have resulted from greater PG volatility relative to VG and sensor losses. The correction factors (ratios 1-4) for PM<sub>2.5</sub> were SMPS + APS data (4.96-7.62), MiniWRAS (2.02-3.64), pDR (0.50-1.07), and SidePak (0.22-0.40). These data can help improve ECIG aerosol measurement accuracy for different ECIG mixture ratios.</p>","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"1 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10947168/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerosol and Air Quality Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.4209/aaqr.230011","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Electronic cigarettes (ECIGs) generate high concentrations of particulate matter (PM), impacting the air quality inhaled by humans through secondhand exposure. ECIG liquids are available commercially and some users create their own "do-it-yourself" liquids, and these liquids often vary in the amounts of their chemical ingredients, including propylene glycol (PG) and vegetable glycerin (VG). Previous studies have quantified PM concentrations in ECIG aerosol generated from liquids containing different PG/VG ratios. However, the effects of these ratios on aerosol instrument filter correction factors needed to measure PM concentrations accurately have not been assessed. Thus, ECIG aerosol filter correction factors for multiple aerosol instruments (SMPS + APS, MiniWRAS, pDR, and SidePak) were determined for five different PG/VG ratios 1) 0PG/100VG, 2) 15PG/85VG, 3) 50PG/50VG, 4) 72PG/28VG, and 5) 90PG/10VG and two different PM sizes, PM1 (1 μm and smaller) and PM2.5 (2.5 μm and smaller). ECIG aerosols were generated inside a controlled exposure chamber using a diaphragm pump and a refillable ECIG device for all the ratios. In addition, the aerosol size distribution and mass median diameter were measured for all five ECIG ratios. PM2.5 correction factors (5-7.6) for ratios 1, 2, 3, and 4 were similar for the SMPS + APS combined data, and ratios 1, 2, 3 were similar for the MiniWRAS (~2), pDR (~0.5), and SidePak (~0.24). These data suggest different correction factors may need to be developed for aerosol generated from ECIGs with high PG content. The higher correction factor values for the 90PG/10VG ratio may have resulted from greater PG volatility relative to VG and sensor losses. The correction factors (ratios 1-4) for PM2.5 were SMPS + APS data (4.96-7.62), MiniWRAS (2.02-3.64), pDR (0.50-1.07), and SidePak (0.22-0.40). These data can help improve ECIG aerosol measurement accuracy for different ECIG mixture ratios.
期刊介绍:
The international journal of Aerosol and Air Quality Research (AAQR) covers all aspects of aerosol science and technology, atmospheric science and air quality related issues. It encompasses a multi-disciplinary field, including:
- Aerosol, air quality, atmospheric chemistry and global change;
- Air toxics (hazardous air pollutants (HAPs), persistent organic pollutants (POPs)) - Sources, control, transport and fate, human exposure;
- Nanoparticle and nanotechnology;
- Sources, combustion, thermal decomposition, emission, properties, behavior, formation, transport, deposition, measurement and analysis;
- Effects on the environments;
- Air quality and human health;
- Bioaerosols;
- Indoor air quality;
- Energy and air pollution;
- Pollution control technologies;
- Invention and improvement of sampling instruments and technologies;
- Optical/radiative properties and remote sensing;
- Carbon dioxide emission, capture, storage and utilization; novel methods for the reduction of carbon dioxide emission;
- Other topics related to aerosol and air quality.