Application of Neural Networks to Matlab Analyzed Hyperspectral Images for Characterization of Composite Structures

M. Iskandarani
{"title":"Application of Neural Networks to Matlab Analyzed Hyperspectral Images for Characterization of Composite Structures","authors":"M. Iskandarani","doi":"10.4236/JILSA.2013.53016","DOIUrl":null,"url":null,"abstract":"A novel approach to damage detection in composite structures using hyperspectral image index analysis algorithm with neural network modeling employing Weight Elimination Algorithm (WEA) is presented and discussed. The matrix band based technique allows the monitoring and analysis of a component’s structure based on correlation between sequentially pulsed thermal images. The technique produces several matrices resulting from frame deviation and pixel redistribution calculations with ability for prediction. The obtained results proved the technique to be capable of identifying damaged components with ability to model various types of damage under different conditions.","PeriodicalId":69452,"journal":{"name":"智能学习系统与应用(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"智能学习系统与应用(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/JILSA.2013.53016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A novel approach to damage detection in composite structures using hyperspectral image index analysis algorithm with neural network modeling employing Weight Elimination Algorithm (WEA) is presented and discussed. The matrix band based technique allows the monitoring and analysis of a component’s structure based on correlation between sequentially pulsed thermal images. The technique produces several matrices resulting from frame deviation and pixel redistribution calculations with ability for prediction. The obtained results proved the technique to be capable of identifying damaged components with ability to model various types of damage under different conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经网络在Matlab分析复合材料结构高光谱图像中的应用
提出并讨论了一种基于加权消除算法的神经网络建模的复合材料结构损伤检测方法——高光谱图像指数分析算法。基于矩阵带的技术允许基于序列脉冲热图像之间的相关性来监测和分析组件的结构。该技术产生由帧偏差和像素重分配计算产生的若干矩阵,具有预测能力。结果表明,该方法能够识别损伤构件,并能模拟不同条件下的各种损伤类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
135
期刊最新文献
Architecting the Metaverse: Blockchain and the Financial and Legal Regulatory Challenges of Virtual Real Estate A Proposed Meta-Reality Immersive Development Pipeline: Generative AI Models and Extended Reality (XR) Content for the Metaverse A Comparison of PPO, TD3 and SAC Reinforcement Algorithms for Quadruped Walking Gait Generation Multiple Collaborative Service Model and System Construction Based on Industrial Competitive Intelligence Skin Cancer Classification Using Transfer Learning by VGG16 Architecture (Case Study on Kaggle Dataset)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1