Design of Type-1 and Interval Type-2 Fuzzy PID Control for Anesthesia Using Genetic Algorithms

Hugo Araujo, Bo Xiao, Chuang Liu, Yanbin Zhao, H. Lam
{"title":"Design of Type-1 and Interval Type-2 Fuzzy PID Control for Anesthesia Using Genetic Algorithms","authors":"Hugo Araujo, Bo Xiao, Chuang Liu, Yanbin Zhao, H. Lam","doi":"10.4236/JILSA.2014.62007","DOIUrl":null,"url":null,"abstract":"This paper presents the automatic drug administration for the regulation of bispectral (BIS) index in the anesthesia process during the clinical surgery by controlling the concentration target of two drugs, namely, propofol and remifentanil. To realize the automatic drug administration, real clinical data are collected for 42 patients for the construction of patients’ models consisting of pharmacokinetic and pharmacodynamic models describing the dynamics reacting to the input drugs. A nominal anesthesia model is obtained by taking the average of 42 patients’ models for the design of control scheme. Three PID controllers are employed, namely linear PID controller, type-1 (T1) fuzzy PID controller and interval type-2 (IT2) fuzzy PID controller, to regulate the BIS index using the nominal patient’s model. The PID gains and membership functions are obtained using genetic algorithm (GA) by minimizing a cost function measuring the control performance. The best trained PID controllers are tested under different scenarios and compared in terms of control performance. Simulation results show that the IT2 fuzzy PID controller offers the best control strategy regulating the BIS index while the T1 fuzzy PID controller comes the second.","PeriodicalId":69452,"journal":{"name":"智能学习系统与应用(英文)","volume":"06 1","pages":"70-93"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"智能学习系统与应用(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/JILSA.2014.62007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

This paper presents the automatic drug administration for the regulation of bispectral (BIS) index in the anesthesia process during the clinical surgery by controlling the concentration target of two drugs, namely, propofol and remifentanil. To realize the automatic drug administration, real clinical data are collected for 42 patients for the construction of patients’ models consisting of pharmacokinetic and pharmacodynamic models describing the dynamics reacting to the input drugs. A nominal anesthesia model is obtained by taking the average of 42 patients’ models for the design of control scheme. Three PID controllers are employed, namely linear PID controller, type-1 (T1) fuzzy PID controller and interval type-2 (IT2) fuzzy PID controller, to regulate the BIS index using the nominal patient’s model. The PID gains and membership functions are obtained using genetic algorithm (GA) by minimizing a cost function measuring the control performance. The best trained PID controllers are tested under different scenarios and compared in terms of control performance. Simulation results show that the IT2 fuzzy PID controller offers the best control strategy regulating the BIS index while the T1 fuzzy PID controller comes the second.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于遗传算法的麻醉1型和区间2型模糊PID控制设计
本文介绍了通过控制异丙酚和瑞芬太尼两种药物的浓度靶点,自动给药来调节临床手术麻醉过程中双谱(BIS)指数。为实现自动给药,收集42例患者的真实临床数据,构建患者模型,包括药代动力学模型和药效学模型,描述患者对输入药物的动力学反应。将42例患者的模型取平均值,得到名义麻醉模型,用于设计控制方案。采用线性PID控制器、1型(T1)模糊PID控制器和区间2型(IT2)模糊PID控制器三种PID控制器,利用标称患者模型对BIS指标进行调节。通过最小化测量控制性能的代价函数,利用遗传算法获得PID增益和隶属函数。在不同的场景下测试训练最好的PID控制器,并比较其控制性能。仿真结果表明,IT2模糊PID控制器对BIS指标的控制效果最好,T1模糊PID控制器的控制效果次之。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
135
期刊最新文献
Architecting the Metaverse: Blockchain and the Financial and Legal Regulatory Challenges of Virtual Real Estate A Proposed Meta-Reality Immersive Development Pipeline: Generative AI Models and Extended Reality (XR) Content for the Metaverse A Comparison of PPO, TD3 and SAC Reinforcement Algorithms for Quadruped Walking Gait Generation Multiple Collaborative Service Model and System Construction Based on Industrial Competitive Intelligence Skin Cancer Classification Using Transfer Learning by VGG16 Architecture (Case Study on Kaggle Dataset)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1