Jing He, Yuan Sun, Qing Gao, Chanfan He, Ke Yao, Tongyao Wang, Mingjun Xie, Kang Yu, Jing Nie, Yuewei Chen, Yong He
{"title":"Gelatin Methacryloyl Hydrogel, from Standardization, Performance, to Biomedical Application","authors":"Jing He, Yuan Sun, Qing Gao, Chanfan He, Ke Yao, Tongyao Wang, Mingjun Xie, Kang Yu, Jing Nie, Yuewei Chen, Yong He","doi":"10.1002/adhm.202300395","DOIUrl":null,"url":null,"abstract":"<p>Gelatin methacryloyl (GelMA), a photocurable hydrogel, is widely used in 3D culture, particularly in 3D bioprinting, due to its high biocompatibility, tunable physicochemical properties, and excellent formability. However, as the properties and performances of GelMA vary under different synthetic conditions, there is a lack of standardization, leading to conflicting results. In this study, a uniform standard is established to understand and enhance GelMA applications. First, the basic concept of GelMA and the density of the molecular network (DMN) are defined. Second, two properties, degrees of substitution and ratio of solid content, as the main measurable parameters determining the DMN are used. Third, the mechanisms and relationships between DMN and its performance in various applications in terms of porosity, viscosity, formability, mechanical strength, swelling, biodegradation, and cytocompatibility are theoretically explained. The main questions that are answered: what does performance mean, why is it important, how to optimize the basic parameters to improve the performance, and how to characterize it reasonably and accurately? Finally, it is hoped that this knowledge will eliminate the need for researchers to conduct tedious and repetitive pre-experiments, enable easy communication for achievements between groups under the same standard, and fully explore the potential of the GelMA hydrogel.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":"12 23","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adhm.202300395","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 10
Abstract
Gelatin methacryloyl (GelMA), a photocurable hydrogel, is widely used in 3D culture, particularly in 3D bioprinting, due to its high biocompatibility, tunable physicochemical properties, and excellent formability. However, as the properties and performances of GelMA vary under different synthetic conditions, there is a lack of standardization, leading to conflicting results. In this study, a uniform standard is established to understand and enhance GelMA applications. First, the basic concept of GelMA and the density of the molecular network (DMN) are defined. Second, two properties, degrees of substitution and ratio of solid content, as the main measurable parameters determining the DMN are used. Third, the mechanisms and relationships between DMN and its performance in various applications in terms of porosity, viscosity, formability, mechanical strength, swelling, biodegradation, and cytocompatibility are theoretically explained. The main questions that are answered: what does performance mean, why is it important, how to optimize the basic parameters to improve the performance, and how to characterize it reasonably and accurately? Finally, it is hoped that this knowledge will eliminate the need for researchers to conduct tedious and repetitive pre-experiments, enable easy communication for achievements between groups under the same standard, and fully explore the potential of the GelMA hydrogel.
期刊介绍:
Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.