Machine Learning for Science: Bridging Data-Driven and Mechanistic Modelling (Dagstuhl Seminar 22382)

Philipp Berens, Kyle Cranmer, Neil D. Lawrence, U. V. Luxburg, Jessica Montgomery
{"title":"Machine Learning for Science: Bridging Data-Driven and Mechanistic Modelling (Dagstuhl Seminar 22382)","authors":"Philipp Berens, Kyle Cranmer, Neil D. Lawrence, U. V. Luxburg, Jessica Montgomery","doi":"10.4230/DagRep.12.9.150","DOIUrl":null,"url":null,"abstract":"This report documents the programme and the outcomes of Dagstuhl Seminar 22382 “Machine Learning for Science: Bridging Data-Driven and Mechanistic Modelling”. Today’s scientific challenges are characterised by complexity. Interconnected natural, technological, and human systems are influenced by forces acting across time- and spatial-scales, resulting in complex interactions and emergent behaviours. Understanding these phenomena – and leveraging scientific advances to deliver innovative solutions to improve society’s health, wealth, and well-being – requires new ways of analysing complex systems. The transformative potential of AI stems from its widespread applicability across disciplines, and will only be achieved through integration across research domains. AI for science is a rendezvous point. It brings together expertise from AI and application domains; combines modelling knowledge with engineering know-how; and relies on collaboration across disciplines and between humans and machines. Alongside technical advances, the next wave of progress in the field will come from building a community of machine learning researchers, domain experts, citizen scientists, and engineers working together to design and deploy effective AI tools. This report summarises the discussions from the seminar and provides a roadmap to suggest how different communities can collaborate to deliver a new wave of progress in AI and its application for scientific discovery.","PeriodicalId":91064,"journal":{"name":"Dagstuhl reports","volume":"12 1","pages":"150-199"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dagstuhl reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/DagRep.12.9.150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This report documents the programme and the outcomes of Dagstuhl Seminar 22382 “Machine Learning for Science: Bridging Data-Driven and Mechanistic Modelling”. Today’s scientific challenges are characterised by complexity. Interconnected natural, technological, and human systems are influenced by forces acting across time- and spatial-scales, resulting in complex interactions and emergent behaviours. Understanding these phenomena – and leveraging scientific advances to deliver innovative solutions to improve society’s health, wealth, and well-being – requires new ways of analysing complex systems. The transformative potential of AI stems from its widespread applicability across disciplines, and will only be achieved through integration across research domains. AI for science is a rendezvous point. It brings together expertise from AI and application domains; combines modelling knowledge with engineering know-how; and relies on collaboration across disciplines and between humans and machines. Alongside technical advances, the next wave of progress in the field will come from building a community of machine learning researchers, domain experts, citizen scientists, and engineers working together to design and deploy effective AI tools. This report summarises the discussions from the seminar and provides a roadmap to suggest how different communities can collaborate to deliver a new wave of progress in AI and its application for scientific discovery.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
科学中的机器学习:桥接数据驱动和机制建模(Dagstuhl Seminar 22382)
本报告记录了Dagstuhl研讨会22382“科学机器学习:桥接数据驱动和机制建模”的计划和成果。今天的科学挑战具有复杂性的特点。相互关联的自然、技术和人类系统受到跨时间和空间尺度作用的力量的影响,导致复杂的相互作用和紧急行为。理解这些现象——并利用科学进步提供创新解决方案以改善社会健康、财富和福祉——需要分析复杂系统的新方法。人工智能的变革潜力源于其跨学科的广泛适用性,只有通过跨研究领域的整合才能实现。人工智能对科学来说是一个集合点。它汇集了人工智能和应用领域的专业知识;将建模知识与工程知识相结合;它依赖于跨学科的合作以及人与机器之间的合作。除了技术进步,该领域的下一波进步将来自于建立一个由机器学习研究人员、领域专家、公民科学家和工程师组成的社区,共同设计和部署有效的人工智能工具。本报告总结了研讨会的讨论,并提供了一个路线图,建议不同的社区如何合作,在人工智能及其在科学发现中的应用方面取得新一波进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computer Science Methods for Effective and Sustainable Simulation Studies (Dagstuhl Seminar 22401) Intelligent Security: Is "AI for Cybersecurity" a Blessing or a Curse (Dagstuhl Seminar 22412) Logic and Random Discrete Structures (Dagstuhl Seminar 22061) Security of Decentralized Financial Technologies (Dagstuhl Seminar 22421) Developmental Machine Learning: From Human Learning to Machines and Back (Dagstuhl Seminar 22422)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1