B. Hayward, M. Holzmann, J. Pawłowski, J. H. Parker, Tushar Kaushik, Makoto S. Toyofuku, M. Tsuchiya
{"title":"Molecular and morphological taxonomy of living Ammonia and related taxa (Foraminifera) and their biogeography","authors":"B. Hayward, M. Holzmann, J. Pawłowski, J. H. Parker, Tushar Kaushik, Makoto S. Toyofuku, M. Tsuchiya","doi":"10.47894/mpal.67.3.01","DOIUrl":null,"url":null,"abstract":"Globally, one of the two most common shallow-marine and estuarine foraminiferal genera is Ammonia. Over the past 50 years, the majority of workers have identified specimens in this genus as belonging to just 1-3 cosmopolitan species - A. beccarii, A. tepida and A. parkinsoniana. This has been partly because of the problems of discriminating the Ammonia species based entirely on shell morphology and partly because of a 1974 laboratory study that claimed to have shown that all morphologies were merely ecophenotypic variants of one species - a conclusion that molecular studies have proven to be unequivocally wrong. In this study we recognize, describe and figure sixty-seven living species and infraspecies of Recent Ammonia and two closely-related genera (Acarotrochus, Pseudoeponides) from around the world and summarize their ecological and biogeographic distribution. Twenty-six species and two subspecies are recognized by DNA sequencing and shown to be morphologically distinguishable. A further 39 morphospecies and one subspecies, that have not yet been sequenced, have sufficiently distinct morphology to be recognized. Canonical variates analysis using 42 measured or assessed morphological characters shows that the majority of these species can be readily discriminated by their test morphologies, although a few of the less-ornamented molecular species are verging on being pseudocryptic. Molecular sequencing of the type species of Challengerella (C. bradyi) and Helenina (H. anderseni) places them within our Ammonia clade. Here we continue to recognize the morphologically highly distinct genera Pseudoeponides (subjective senior synonym of Helenina) and allied Acarotrochus. Twenty new species or subspecies are described (molecular T types in brackets): Ammonia abramovichae (T8), A. akitaae, A. aoteana australiensis (T5A), A. arabica (T26), A. ariakensis quiltyi, A. buzasi (T11), A. fajemilai, A. goldsteinae, A. goodayi, A. haigi (T25), A. hattai, A. jorisseni (T23), A. justinparkeri, A. kitazatoi (T10), A. morleyae (T12), A. shchedrinae, A. turgida almogilabinae (T22M), Acarotrochus lippsi, Pseudoeponides hottingeri and P. dubuissoni. Aneotype is designated for A. veneta (Schultze 1854) (T1). We recognize 67 Ammonia and related taxa in this study but speculate that there may be 30 or more additional living species that we are not yet confident to discriminate without molecular sequencing. Ammonia species live in most parts of the world between 62 degrees N (Faeroe Islands) and 55 degrees S (Strait of Magellan), where seasonal sea-surface temperatures are 4-10 degrees C and above. One estuarine species (A. veneta, T1) is cosmopolitan, euryhaline and eurythermic. Several species are widespread in one or two ocean regions (e.g., Atlantic and Mediterranean; South Pacific), whereas the majority are endemic to smaller areas (e.g., eastern Mediterranean; Caribbean-Gulf of Mexico). Eleven biogeographic \"provinces\" are recognized by cluster analysis of presence/absence records with the highest diversities in the Australian and northwest Pacific provinces with 18 and 19 species each). Levels of endemism in our \"provinces\" range between 0 (temperate Atlantic) and 44% (Australian).","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.47894/mpal.67.3.01","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 30
Abstract
Globally, one of the two most common shallow-marine and estuarine foraminiferal genera is Ammonia. Over the past 50 years, the majority of workers have identified specimens in this genus as belonging to just 1-3 cosmopolitan species - A. beccarii, A. tepida and A. parkinsoniana. This has been partly because of the problems of discriminating the Ammonia species based entirely on shell morphology and partly because of a 1974 laboratory study that claimed to have shown that all morphologies were merely ecophenotypic variants of one species - a conclusion that molecular studies have proven to be unequivocally wrong. In this study we recognize, describe and figure sixty-seven living species and infraspecies of Recent Ammonia and two closely-related genera (Acarotrochus, Pseudoeponides) from around the world and summarize their ecological and biogeographic distribution. Twenty-six species and two subspecies are recognized by DNA sequencing and shown to be morphologically distinguishable. A further 39 morphospecies and one subspecies, that have not yet been sequenced, have sufficiently distinct morphology to be recognized. Canonical variates analysis using 42 measured or assessed morphological characters shows that the majority of these species can be readily discriminated by their test morphologies, although a few of the less-ornamented molecular species are verging on being pseudocryptic. Molecular sequencing of the type species of Challengerella (C. bradyi) and Helenina (H. anderseni) places them within our Ammonia clade. Here we continue to recognize the morphologically highly distinct genera Pseudoeponides (subjective senior synonym of Helenina) and allied Acarotrochus. Twenty new species or subspecies are described (molecular T types in brackets): Ammonia abramovichae (T8), A. akitaae, A. aoteana australiensis (T5A), A. arabica (T26), A. ariakensis quiltyi, A. buzasi (T11), A. fajemilai, A. goldsteinae, A. goodayi, A. haigi (T25), A. hattai, A. jorisseni (T23), A. justinparkeri, A. kitazatoi (T10), A. morleyae (T12), A. shchedrinae, A. turgida almogilabinae (T22M), Acarotrochus lippsi, Pseudoeponides hottingeri and P. dubuissoni. Aneotype is designated for A. veneta (Schultze 1854) (T1). We recognize 67 Ammonia and related taxa in this study but speculate that there may be 30 or more additional living species that we are not yet confident to discriminate without molecular sequencing. Ammonia species live in most parts of the world between 62 degrees N (Faeroe Islands) and 55 degrees S (Strait of Magellan), where seasonal sea-surface temperatures are 4-10 degrees C and above. One estuarine species (A. veneta, T1) is cosmopolitan, euryhaline and eurythermic. Several species are widespread in one or two ocean regions (e.g., Atlantic and Mediterranean; South Pacific), whereas the majority are endemic to smaller areas (e.g., eastern Mediterranean; Caribbean-Gulf of Mexico). Eleven biogeographic "provinces" are recognized by cluster analysis of presence/absence records with the highest diversities in the Australian and northwest Pacific provinces with 18 and 19 species each). Levels of endemism in our "provinces" range between 0 (temperate Atlantic) and 44% (Australian).
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.