{"title":"Rise and fall of rotaliid foraminifera across the Paleocene and Eocene times","authors":"A. Benedetti, C. A. Papazzoni","doi":"10.47894/mpal.68.2.02","DOIUrl":null,"url":null,"abstract":"Rotaliids are one of the groups of larger foraminifera that quickly recolonized the shallow-water environments after the mass extinction at the end of the Cretaceous. Here we present a summary of the state of the art about their stratigraphic distribution and diversity across the Paleocene and Eocene epochs. Our data suggest that their differentiation at the genus level was very rapid and reached its maximum in the upper Danian SBZ2. Specific diversification, instead, culminated in the upper Thanetian SBZ4, with a second peak during the Cuisian (=upper Ypresian). Successively, the rotaliid diversity definitely declined, whereas other groups of larger foraminifera, and especially Alveolina and Nummulites, became more widespread and flourished with a large amount of species, up to the lower Bartonian SBZ17, when a final drop in rotaliid diversity is recorded. These major changes appear strictly linked to climate warming events such as Late Danian Event (LDE, generic diversification of rotaliids), Paleocene-Eocene Thermal Maximum (PETM, faunal turnover followed by abrupt decrease in both generic and specific diversity), Early Eocene Climatic Optimum (EECO, increase in number of K-strategists under oligotrophic conditions) and Middle Eocene Climatic Optimum (MECO, ultimate drop in diversity and competition with other larger foraminifera).","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.47894/mpal.68.2.02","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 10
Abstract
Rotaliids are one of the groups of larger foraminifera that quickly recolonized the shallow-water environments after the mass extinction at the end of the Cretaceous. Here we present a summary of the state of the art about their stratigraphic distribution and diversity across the Paleocene and Eocene epochs. Our data suggest that their differentiation at the genus level was very rapid and reached its maximum in the upper Danian SBZ2. Specific diversification, instead, culminated in the upper Thanetian SBZ4, with a second peak during the Cuisian (=upper Ypresian). Successively, the rotaliid diversity definitely declined, whereas other groups of larger foraminifera, and especially Alveolina and Nummulites, became more widespread and flourished with a large amount of species, up to the lower Bartonian SBZ17, when a final drop in rotaliid diversity is recorded. These major changes appear strictly linked to climate warming events such as Late Danian Event (LDE, generic diversification of rotaliids), Paleocene-Eocene Thermal Maximum (PETM, faunal turnover followed by abrupt decrease in both generic and specific diversity), Early Eocene Climatic Optimum (EECO, increase in number of K-strategists under oligotrophic conditions) and Middle Eocene Climatic Optimum (MECO, ultimate drop in diversity and competition with other larger foraminifera).
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.