{"title":"Fog Computing Architecture for Scalable Processing of Geospatial Big Data","authors":"Rabindra Kumar Barik, R. Priyadarshini, R. K. Lenka, Harishchandra Dubey, K. Mankodiya","doi":"10.4018/ijagr.2020010101","DOIUrl":null,"url":null,"abstract":"Geospatialdataanalysisusingcloudcomputingplatformisoneofthepromisingareasforanalysing, retrieving,andprocessingvolumetricdata.Fogcomputingparadigmassistscloudplatformwherefog devicestrytoincreasethethroughputandreducelatencyattheedgeoftheclient.Inthisresearchpaper, theauthorsdiscusstwocasestudiesongeospatialdataanalysisusingFog-assistedcloudcomputing namely,(1)GangaRiverBasinManagementSystem;and(2)TourismInformationManagementof India.BothcasestudiesevaluateproposedGeoFogarchitectureforefficientanalysisandmanagement ofgeospatial bigdata employing fog computing.The authorsdevelopedaprototypeofGeoFog architectureusingIntelEdisonandRaspberryPidevices.Theauthors implementedsomeof the opensourcecompressionmethodsforreducingthedatatransmissionoverloadinthecloud.Proposed architectureperformsdatacompressionandoverlayanalysisofdata.Theauthorsfurtherdiscussed theimprovementinscalabilityandtimeanalysisusingproposedGeoFogarchitectureandGeospark tool.Discussedresultsshowthemeritoffogcomputingthatholdsanenormouspromiseforenhanced analysisofgeospatialbigdatainriverGangabasinandtourisminformationmanagementscenario. KeywoRDS Cloud Computing, Geospatial Big Data, Geospatial Data, K-Means, Open Source GIS, Overlay Analysis, River, Tourism, Visualization","PeriodicalId":43062,"journal":{"name":"International Journal of Applied Geospatial Research","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4018/ijagr.2020010101","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Geospatial Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijagr.2020010101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 6
地理空间大数据可扩展处理的雾计算架构
Geospatialdataanalysisusingcloudcomputingplatformisoneofthepromisingareasforanalysing,检索,andprocessingvolumetricdata。Fogcomputingparadigmassistscloudplatformwherefog devicestrytoincreasethethroughputandreducelatencyattheedgeoftheclient。Inthisresearchpaper, theauthorsdiscusstwocasestudiesongeospatialdataanalysisusingFog-assistedcloudcomputing即:(1)GangaRiverBasinManagementSystem;and(2)TourismInformationManagementof印度。BothcasestudiesevaluateproposedGeoFogarchitectureforefficientanalysisandmanagement ofgeospatial bigdata采用雾计算。The authorsdevelopedaprototypeofGeoFog architectureusingIntelEdisonandRaspberryPidevices。Theauthors implementedsomeof theopensourcecompressionmethodsforreducingthedatatransmissionoverloadinthecloud。Proposed architectureperformsdatacompressionandoverlayanalysisofdata。Theauthorsfurtherdiscussed theimprovementinscalabilityandtimeanalysisusingproposedGeoFogarchitectureandGeospark工具。Discussedresultsshowthemeritoffogcomputingthatholdsanenormouspromiseforenhanced analysisofgeospatialbigdatainriverGangabasinandtourisminformationmanagementscenario。关键词云计算,地理空间大数据,地理空间数据,K-Means,开源GIS,叠加分析,河流,旅游,可视化
本文章由计算机程序翻译,如有差异,请以英文原文为准。