Software Analytics of Open Source Business Software

C. W. Butler
{"title":"Software Analytics of Open Source Business Software","authors":"C. W. Butler","doi":"10.4236/jsea.2022.155008","DOIUrl":null,"url":null,"abstract":"This paper applies software analytics to open source code. Open-source software gives both individuals and businesses the flexibility to work with different parts of available code to modify it or incorporate it into their own project. The open source software market is growing. Major companies such as AWS, Facebook, Google, IBM, Microsoft, Netflix, SAP, Cisco, Intel, and Tesla have joined the open source software community. In this study, a sample of 40 open source applications was selected. Traditional McCabe software metrics including cyclomatic and essential complexities were examined. An analytical comparison of this set of metrics and derived metrics for high risk software was utilized as a basis for addressing risk management in the adoption and integration decisions of open source software. From this comparison, refinements were added, and contemporary concepts of design and data metrics derived from cyclomatic complexity were integrated into a classification scheme for software quality. It was found that 84% of the sample open source applications were classified as moderate low risk or low risk indicating that open source software exhibits low risk characteristics. The 40 open source applications were the base data for the model resulting in a technique which is applicable to any open source code regardless of functionality, language, or size.","PeriodicalId":62222,"journal":{"name":"软件工程与应用(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"软件工程与应用(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/jsea.2022.155008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper applies software analytics to open source code. Open-source software gives both individuals and businesses the flexibility to work with different parts of available code to modify it or incorporate it into their own project. The open source software market is growing. Major companies such as AWS, Facebook, Google, IBM, Microsoft, Netflix, SAP, Cisco, Intel, and Tesla have joined the open source software community. In this study, a sample of 40 open source applications was selected. Traditional McCabe software metrics including cyclomatic and essential complexities were examined. An analytical comparison of this set of metrics and derived metrics for high risk software was utilized as a basis for addressing risk management in the adoption and integration decisions of open source software. From this comparison, refinements were added, and contemporary concepts of design and data metrics derived from cyclomatic complexity were integrated into a classification scheme for software quality. It was found that 84% of the sample open source applications were classified as moderate low risk or low risk indicating that open source software exhibits low risk characteristics. The 40 open source applications were the base data for the model resulting in a technique which is applicable to any open source code regardless of functionality, language, or size.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开源商业软件的软件分析
本文将软件分析应用于开源代码。开源软件为个人和企业提供了使用可用代码的不同部分进行修改或将其合并到自己的项目中的灵活性。开源软件市场正在增长。AWS、Facebook、b谷歌、IBM、微软、Netflix、SAP、思科、英特尔和特斯拉等大公司都加入了开源软件社区。在本研究中,选取了40个开源应用程序作为样本。传统的McCabe软件度量包括圈复杂度和本质复杂度。对这组度量标准和高风险软件的派生度量标准的分析比较被用作处理开源软件采用和集成决策中的风险管理的基础。从这种比较中,添加了改进,并且从圈复杂度派生的设计和数据度量的现代概念被集成到软件质量的分类方案中。发现84%的样本开源应用程序被分类为中等低风险或低风险,这表明开源软件表现出低风险特征。这40个开放源代码应用程序是模型的基础数据,从而产生了一种技术,它适用于任何开放源代码,无论其功能、语言或大小如何。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
815
期刊最新文献
Advanced Face Mask Detection Model Using Hybrid Dilation Convolution Based Method Artificial Intelligence and the Sustainable Development Goals: An Exploratory Study in the Context of the Society Domain Guideline of Test Suite Construction for GUI Software Centered on Grey-Box Approach Software Metric Analysis of Open-Source Business Software Research and Implementation of Cancer Gene Data Classification Based on Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1