Breast Cancer Prediction Based on Machine Learning

Yuan-Gu Wei, Dan Zhang, Meiyan Gao, Yuan Tian, Ya He, Bolin Huang, Changyang Zheng
{"title":"Breast Cancer Prediction Based on Machine Learning","authors":"Yuan-Gu Wei, Dan Zhang, Meiyan Gao, Yuan Tian, Ya He, Bolin Huang, Changyang Zheng","doi":"10.4236/jsea.2023.168018","DOIUrl":null,"url":null,"abstract":"Breast cancer is a significant health concern, necessitating accurate prediction models for early detection and improved patient outcomes. This study presents a comparative analysis of three machine learning models, namely, Logistic Regression, Decision Tree, and Random Forest, for breast cancer prediction using the Wisconsin breast cancer diagnostic dataset. The dataset comprises features computed from fine needle aspirate images of breast masses, with 357 benign and 212 malignant cases. The research findings high-light that the Random Forest model, leveraging the top 5 predictors—“concave points_mean”, “area_mean”, “radius_mean”, “perimeter_mean”, and “con-cavity_mean”, achieves the highest predictive accuracy of approximately 95% and a cross-validation score of approximately 93% for the test dataset. These results demonstrate the potential of machine learning approaches in breast cancer prediction, underscoring their importance in aiding early detection and diagnosis.","PeriodicalId":62222,"journal":{"name":"软件工程与应用(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"软件工程与应用(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/jsea.2023.168018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Breast cancer is a significant health concern, necessitating accurate prediction models for early detection and improved patient outcomes. This study presents a comparative analysis of three machine learning models, namely, Logistic Regression, Decision Tree, and Random Forest, for breast cancer prediction using the Wisconsin breast cancer diagnostic dataset. The dataset comprises features computed from fine needle aspirate images of breast masses, with 357 benign and 212 malignant cases. The research findings high-light that the Random Forest model, leveraging the top 5 predictors—“concave points_mean”, “area_mean”, “radius_mean”, “perimeter_mean”, and “con-cavity_mean”, achieves the highest predictive accuracy of approximately 95% and a cross-validation score of approximately 93% for the test dataset. These results demonstrate the potential of machine learning approaches in breast cancer prediction, underscoring their importance in aiding early detection and diagnosis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的乳腺癌预测
乳腺癌是一个重大的健康问题,需要建立准确的预测模型,以便及早发现并改善患者的预后。本研究对三种机器学习模型进行了比较分析,即逻辑回归、决策树和随机森林,用于使用威斯康星州乳腺癌诊断数据集进行乳腺癌预测。该数据集包括从乳腺肿块的细针抽吸图像计算的特征,其中357例为良性,212例为恶性。研究结果表明,随机森林模型利用了前5个预测因子——“凹点均值”、“area_mean”、“radius_mean”、“perimeter_mean”和“con-cavity_mean”,对测试数据集的预测准确率最高,约为95%,交叉验证分数约为93%。这些结果证明了机器学习方法在乳腺癌预测中的潜力,强调了它们在帮助早期发现和诊断方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
815
期刊最新文献
Advanced Face Mask Detection Model Using Hybrid Dilation Convolution Based Method Artificial Intelligence and the Sustainable Development Goals: An Exploratory Study in the Context of the Society Domain Guideline of Test Suite Construction for GUI Software Centered on Grey-Box Approach Software Metric Analysis of Open-Source Business Software Research and Implementation of Cancer Gene Data Classification Based on Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1