RETAD: Vehicle Trajectory Anomaly Detection Based on Reconstruction Error

IF 0.5 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING International Journal of Data Warehousing and Mining Pub Date : 2023-01-13 DOI:10.4018/ijdwm.316460
Chaoneng Li, Guanwen Feng, Yiran Jia, Yunan Li, Jian Ji, Qiguang Miao
{"title":"RETAD: Vehicle Trajectory Anomaly Detection Based on Reconstruction Error","authors":"Chaoneng Li, Guanwen Feng, Yiran Jia, Yunan Li, Jian Ji, Qiguang Miao","doi":"10.4018/ijdwm.316460","DOIUrl":null,"url":null,"abstract":"Due to the rapid advancement of wireless sensor and location technologies, a large amount of mobile agent trajectory data has become available. Intelligent city systems and video surveillance all benefit from trajectory anomaly detection. The authors propose an unsupervised reconstruction error-based trajectory anomaly detection (RETAD) method for vehicles to address the issues of conventional anomaly detection, which include difficulty extracting features, are susceptible to overfitting, and have a poor anomaly detection effect. RETAD reconstructs the original vehicle trajectories through an autoencoder based on recurrent neural networks. The model obtains moving patterns of normal trajectories by eliminating the gap between the reconstruction results and the initial inputs. Anomalous trajectories are defined as those with a reconstruction error larger than anomaly threshold. Experimental results demonstrate that the effectiveness of RETAD in detecting anomalies is superior to traditional distance-based, density-based, and machine learning classification algorithms on multiple metrics.","PeriodicalId":54963,"journal":{"name":"International Journal of Data Warehousing and Mining","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Warehousing and Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijdwm.316460","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the rapid advancement of wireless sensor and location technologies, a large amount of mobile agent trajectory data has become available. Intelligent city systems and video surveillance all benefit from trajectory anomaly detection. The authors propose an unsupervised reconstruction error-based trajectory anomaly detection (RETAD) method for vehicles to address the issues of conventional anomaly detection, which include difficulty extracting features, are susceptible to overfitting, and have a poor anomaly detection effect. RETAD reconstructs the original vehicle trajectories through an autoencoder based on recurrent neural networks. The model obtains moving patterns of normal trajectories by eliminating the gap between the reconstruction results and the initial inputs. Anomalous trajectories are defined as those with a reconstruction error larger than anomaly threshold. Experimental results demonstrate that the effectiveness of RETAD in detecting anomalies is superior to traditional distance-based, density-based, and machine learning classification algorithms on multiple metrics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RETAD:基于重构误差的车辆轨迹异常检测
由于无线传感器和定位技术的快速发展,大量的移动智能体轨迹数据已经可用。智能城市系统和视频监控都受益于轨迹异常检测。针对传统异常检测方法存在特征提取困难、易出现过拟合、异常检测效果差等问题,提出了一种基于无监督重构误差的车辆轨迹异常检测方法。RETAD通过基于循环神经网络的自编码器重构原始车辆轨迹。该模型通过消除重建结果与初始输入之间的差距来获得法向轨迹的运动模式。异常轨迹是指重建误差大于异常阈值的轨迹。实验结果表明,RETAD在检测异常方面的有效性优于传统的基于距离、基于密度和机器学习的多指标分类算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Data Warehousing and Mining
International Journal of Data Warehousing and Mining COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
2.40
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: The International Journal of Data Warehousing and Mining (IJDWM) disseminates the latest international research findings in the areas of data management and analyzation. IJDWM provides a forum for state-of-the-art developments and research, as well as current innovative activities focusing on the integration between the fields of data warehousing and data mining. Emphasizing applicability to real world problems, this journal meets the needs of both academic researchers and practicing IT professionals.The journal is devoted to the publications of high quality papers on theoretical developments and practical applications in data warehousing and data mining. Original research papers, state-of-the-art reviews, and technical notes are invited for publications. The journal accepts paper submission of any work relevant to data warehousing and data mining. Special attention will be given to papers focusing on mining of data from data warehouses; integration of databases, data warehousing, and data mining; and holistic approaches to mining and archiving
期刊最新文献
Fishing Vessel Type Recognition Based on Semantic Feature Vector Optimizing Cadet Squad Organizational Satisfaction by Integrating Leadership Factor Data Mining and Integer Programming Hybrid Inductive Graph Method for Matrix Completion A Fuzzy Portfolio Model With Cardinality Constraints Based on Differential Evolution Algorithms Dynamic Research on Youth Thought, Behavior, and Growth Law Based on Deep Learning Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1