{"title":"CTNRL: A Novel Network Representation Learning With Three Feature Integrations","authors":"Yanlong Tang, Zhonglin Ye, Haixing Zhao, Yi Ji","doi":"10.4018/ijdwm.318696","DOIUrl":null,"url":null,"abstract":"Network representation learning is one of the important works of analyzing network information. Its purpose is to learn a vector for each node in the network and map it into the vector space, and the resulting number of node dimensions is much smaller than the number of nodes in the network. Most of the current work only considers local features and ignores other features in the network, such as attribute features. Aiming at such problems, this paper proposes novel mechanisms of combining network topology, which models node text information and node clustering information on the basis of network structure and then constrains the learning process of network representation to obtain the optimal network node vector. The method is experimentally verified on three datasets: Citeseer (M10), DBLP (V4), and SDBLP. Experimental results show that the proposed method is better than the algorithm based on network topology and text feature. Good experimental results are obtained, which verifies the feasibility of the algorithm and achieves the expected experimental results.","PeriodicalId":54963,"journal":{"name":"International Journal of Data Warehousing and Mining","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Warehousing and Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijdwm.318696","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Network representation learning is one of the important works of analyzing network information. Its purpose is to learn a vector for each node in the network and map it into the vector space, and the resulting number of node dimensions is much smaller than the number of nodes in the network. Most of the current work only considers local features and ignores other features in the network, such as attribute features. Aiming at such problems, this paper proposes novel mechanisms of combining network topology, which models node text information and node clustering information on the basis of network structure and then constrains the learning process of network representation to obtain the optimal network node vector. The method is experimentally verified on three datasets: Citeseer (M10), DBLP (V4), and SDBLP. Experimental results show that the proposed method is better than the algorithm based on network topology and text feature. Good experimental results are obtained, which verifies the feasibility of the algorithm and achieves the expected experimental results.
期刊介绍:
The International Journal of Data Warehousing and Mining (IJDWM) disseminates the latest international research findings in the areas of data management and analyzation. IJDWM provides a forum for state-of-the-art developments and research, as well as current innovative activities focusing on the integration between the fields of data warehousing and data mining. Emphasizing applicability to real world problems, this journal meets the needs of both academic researchers and practicing IT professionals.The journal is devoted to the publications of high quality papers on theoretical developments and practical applications in data warehousing and data mining. Original research papers, state-of-the-art reviews, and technical notes are invited for publications. The journal accepts paper submission of any work relevant to data warehousing and data mining. Special attention will be given to papers focusing on mining of data from data warehouses; integration of databases, data warehousing, and data mining; and holistic approaches to mining and archiving