{"title":"Tropomyosin Isoform Expression in the Adductor Muscle of the Japanese Pearl Oyster, Pinctada fucata","authors":"D. Funabara, A. Ohta, J. Sueyoshi, S. Kanoh","doi":"10.4236/AJMB.2019.91002","DOIUrl":null,"url":null,"abstract":"We determined the full-length primary structure of the tropomyosin (TM)-1 and -2 proteins from the adductor muscle of the Japanese pearl oyster Pinctada fucata (Pifuc-TM-1 and Pifuc-TM-2), and found that they are each composed of 284 amino acid residues. We predicted the gene structure of P. fucata TM (Pifuc-TM) using Splign alignment of our cDNA with genomic sequences and elucidated that Pifuc-TM consists of 10 exons. Exons 1 - 3 and 5 - 10 are used to transcribe Pifuc-TM-1 mRNA, and exons 1 - 4 and 6 - 10 are used to transcribe Pifuc-TM-2 mRNA. Both genes share the same start and stop codons located in exon 1 and exon 10, respectively. Using quantitative real-time PCR, we determined that the Pifuc-TM-1 gene was mainly expressed in adductor phasic muscle, and at a relatively weaker level in adductor catch muscle, whereas the Pifuc-TM-2 gene was expressed equally in both phasic and catch muscles. They were weakly expressed in gill and mantle. Immunoblot analysis using anti-Pifuc-TM-1 and anti-Pifuc-TM-2 antibodies revealed that adductor phasic muscle contained Pifuc-TM-1, while adductor catch muscle contained both Pifuc-TM-1 and Pifuc-TM-2. Differential scanning calorimetry (DSC) analysis was carried out for Pifuc-TM-1 and Pifuc-TM-2 expressed in bacteria, as well as TM purified from P. fucata phasic and catch muscle tissues (phasic-TM and catch-TM). The DSC data indicated that phasic-TM was mainly composed of Pifuc-TM-1, whereas catch-TM contained Pifuc-TM-1 and Pifuc-TM-2. These findings suggest that the distribution of Pifuc-TM-1 and Pifuc-TM-2 in adductor muscle is specific to the muscle fiber type, and reflects the properties of each.","PeriodicalId":65391,"journal":{"name":"美国分子生物学期刊(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"美国分子生物学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/AJMB.2019.91002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We determined the full-length primary structure of the tropomyosin (TM)-1 and -2 proteins from the adductor muscle of the Japanese pearl oyster Pinctada fucata (Pifuc-TM-1 and Pifuc-TM-2), and found that they are each composed of 284 amino acid residues. We predicted the gene structure of P. fucata TM (Pifuc-TM) using Splign alignment of our cDNA with genomic sequences and elucidated that Pifuc-TM consists of 10 exons. Exons 1 - 3 and 5 - 10 are used to transcribe Pifuc-TM-1 mRNA, and exons 1 - 4 and 6 - 10 are used to transcribe Pifuc-TM-2 mRNA. Both genes share the same start and stop codons located in exon 1 and exon 10, respectively. Using quantitative real-time PCR, we determined that the Pifuc-TM-1 gene was mainly expressed in adductor phasic muscle, and at a relatively weaker level in adductor catch muscle, whereas the Pifuc-TM-2 gene was expressed equally in both phasic and catch muscles. They were weakly expressed in gill and mantle. Immunoblot analysis using anti-Pifuc-TM-1 and anti-Pifuc-TM-2 antibodies revealed that adductor phasic muscle contained Pifuc-TM-1, while adductor catch muscle contained both Pifuc-TM-1 and Pifuc-TM-2. Differential scanning calorimetry (DSC) analysis was carried out for Pifuc-TM-1 and Pifuc-TM-2 expressed in bacteria, as well as TM purified from P. fucata phasic and catch muscle tissues (phasic-TM and catch-TM). The DSC data indicated that phasic-TM was mainly composed of Pifuc-TM-1, whereas catch-TM contained Pifuc-TM-1 and Pifuc-TM-2. These findings suggest that the distribution of Pifuc-TM-1 and Pifuc-TM-2 in adductor muscle is specific to the muscle fiber type, and reflects the properties of each.