SGK1 Inhibits ULK2 Autophagy Activity

S. Shin, E. J. Lee, S. Hyun, S. Kang
{"title":"SGK1 Inhibits ULK2 Autophagy Activity","authors":"S. Shin, E. J. Lee, S. Hyun, S. Kang","doi":"10.4236/ajmb.2020.101002","DOIUrl":null,"url":null,"abstract":"Serum- and glucocorticoid-induced kinase 1 (SGK1) is known to have consensus sequence of phosphorylation site R-x-R-x-x-(S/T)-Φ, where Φ is any hydrophobic amino acid and arginine residues are conserved at positions −5 and −3 relative to positions of Ser/Thr residues that are phosphorylated in the presence of SGK1. UNC-21-like kinase 2 (ULK2) also harbors putative SGK1 phosphorylation sites at both Ser507 (502RsRnsSG508) and Ser750 (745RtRttSV751) residues. Thus, the objective of this study was to determine whether Ser507 and Ser750 residues of ULK2 could be phosphorylation sites of SGK1 as one of its authentic substrate proteins. Using ULK2 507 and 750 serine residue un- or phosphorylation analog (S507AS750A or 507DS750D), we observed that modification of Ser507 or Ser750 residue was required to activate the kinase activity of ULK2 and sensitize ULK2 to stress or starvation while simultaneously enhancing its active state and autophagy characteristics, suggesting that phosphorylation at Ser750 or Ser507 residue could modulate its subcellular localization and protein interaction with AMPK1α to activate ULK2. We also observed that ULK2 autophagy activity was enhanced by GSK650394 (an SGK1 inhibitor) to compensate survival capacity through increasing its association with LC3 and phosphorylation. When SGK1 known to be associated with cell survival was inhibited by GSK650394, ULK2 autophagy pathway was activated to avoid cell death alternatively. Thus, our observations indicate that phosphorylation of ULK2 by SGK1 can regulate cell survival as an alternative modulation of ULK2 functions.","PeriodicalId":65391,"journal":{"name":"美国分子生物学期刊(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"美国分子生物学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/ajmb.2020.101002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Serum- and glucocorticoid-induced kinase 1 (SGK1) is known to have consensus sequence of phosphorylation site R-x-R-x-x-(S/T)-Φ, where Φ is any hydrophobic amino acid and arginine residues are conserved at positions −5 and −3 relative to positions of Ser/Thr residues that are phosphorylated in the presence of SGK1. UNC-21-like kinase 2 (ULK2) also harbors putative SGK1 phosphorylation sites at both Ser507 (502RsRnsSG508) and Ser750 (745RtRttSV751) residues. Thus, the objective of this study was to determine whether Ser507 and Ser750 residues of ULK2 could be phosphorylation sites of SGK1 as one of its authentic substrate proteins. Using ULK2 507 and 750 serine residue un- or phosphorylation analog (S507AS750A or 507DS750D), we observed that modification of Ser507 or Ser750 residue was required to activate the kinase activity of ULK2 and sensitize ULK2 to stress or starvation while simultaneously enhancing its active state and autophagy characteristics, suggesting that phosphorylation at Ser750 or Ser507 residue could modulate its subcellular localization and protein interaction with AMPK1α to activate ULK2. We also observed that ULK2 autophagy activity was enhanced by GSK650394 (an SGK1 inhibitor) to compensate survival capacity through increasing its association with LC3 and phosphorylation. When SGK1 known to be associated with cell survival was inhibited by GSK650394, ULK2 autophagy pathway was activated to avoid cell death alternatively. Thus, our observations indicate that phosphorylation of ULK2 by SGK1 can regulate cell survival as an alternative modulation of ULK2 functions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SGK1抑制ULK2自噬活性
已知血清和糖皮质激素诱导的激酶1 (SGK1)具有一致的磷酸化位点R-x-R-x-x-(S/T)-Φ序列,其中Φ是任何疏水氨基酸和精氨酸残基相对于在SGK1存在下被磷酸化的丝氨酸/苏氨酸残基的- 5和- 3位置保守。unc -21样激酶2 (ULK2)在Ser507 (502RsRnsSG508)和Ser750 (745RtRttSV751)残基上也含有假定的SGK1磷酸化位点。因此,本研究的目的是确定ULK2的Ser507和Ser750残基是否可能是SGK1的磷酸化位点,作为其真正的底物蛋白之一。使用ULK2 507和750丝氨酸残基非磷酸化或磷酸化类似物(S507AS750A或507DS750D),我们观察到需要修饰Ser507或Ser750残基来激活ULK2的激酶活性,并使ULK2对应激或饥饿敏感,同时增强其活性状态和自噬特性,这表明Ser750或Ser507残基的磷酸化可以调节其亚细胞定位和与AMPK1α的蛋白相互作用来激活ULK2。我们还观察到,GSK650394(一种SGK1抑制剂)增强了ULK2自噬活性,通过增加其与LC3和磷酸化的关联来补偿生存能力。当已知与细胞存活相关的SGK1被GSK650394抑制时,ULK2自噬途径被激活,从而交替避免细胞死亡。因此,我们的观察表明,SGK1对ULK2的磷酸化可以作为ULK2功能的替代调节来调节细胞存活。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
188
期刊最新文献
Comparison of Two Molecular Diagnostic Tests for COVID-19: Abbott RealTime SARS-CoV-2 and Allplex™ 2019-nCoV, in the Epidemic Context in Senegal Identification and Characterization of Hepatitis B Virus Immune Escape Mutants in Kenya Comparative Performance of Microscopy and Nested PCR for the Detection of Cryptosporidium Species in Patients Living with HIV/Aids in Abidjan (Côte d’Ivoire) Insight into Genetic Diversity of Cultivated Lima Bean (Phaseolus lunatus L.) in Benin Association of Host Interferon-γ Gene Polymorphism with Toxoplasma gondii Infection in Pregnant Women of Bangladesh
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1