A predictive model for hydrogen content in steel in non-degassed heats

B. Lopes, J. A. Castro, L. Demuner, A. C. E. Silva
{"title":"A predictive model for hydrogen content in steel in non-degassed heats","authors":"B. Lopes, J. A. Castro, L. Demuner, A. C. E. Silva","doi":"10.4322/2176-1523.20212519","DOIUrl":null,"url":null,"abstract":"Hydrogen may cause several problems during steel processing. Issues caused or enhanced by hydrogen range from different types of bubbles such as pinholes to breakout during continuous casting. Further down the line, segregation and embrittlement may lead to cracking such as flaking or blistering. These problems impact plant productivity and have cost impacts on equipment maintenance and the need for additional steel treatment. Some of the problems lead to scraping. Although vacuum degassing effectively controls the hydrogen content of steel, it introduces additional costs that are not justifiable for many products. This work aims to identify the main sources of hydrogen in liquid steel in the Ternium Brazil steelmaking plant and to propose a model to decide the need for hydrogen measurement for the degassing process, focusing on steels for which vacuum degassing is not a specification requirement. It is essential for these steels to guarantee a controlled level of dissolved hydrogen to avoid problems, mostly at casting. Once the sources are identified, a model is developed to predict the hydrogen content at the beginning of the secondary metallurgy treatment. Based on the model, it is proposed that hydrogen should be measured or not at this step to decide if vacuum degassing is required to assure safety in casting.","PeriodicalId":53327,"journal":{"name":"Tecnologia em Metalurgia Materiais e Mineracao","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tecnologia em Metalurgia Materiais e Mineracao","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4322/2176-1523.20212519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Hydrogen may cause several problems during steel processing. Issues caused or enhanced by hydrogen range from different types of bubbles such as pinholes to breakout during continuous casting. Further down the line, segregation and embrittlement may lead to cracking such as flaking or blistering. These problems impact plant productivity and have cost impacts on equipment maintenance and the need for additional steel treatment. Some of the problems lead to scraping. Although vacuum degassing effectively controls the hydrogen content of steel, it introduces additional costs that are not justifiable for many products. This work aims to identify the main sources of hydrogen in liquid steel in the Ternium Brazil steelmaking plant and to propose a model to decide the need for hydrogen measurement for the degassing process, focusing on steels for which vacuum degassing is not a specification requirement. It is essential for these steels to guarantee a controlled level of dissolved hydrogen to avoid problems, mostly at casting. Once the sources are identified, a model is developed to predict the hydrogen content at the beginning of the secondary metallurgy treatment. Based on the model, it is proposed that hydrogen should be measured or not at this step to decide if vacuum degassing is required to assure safety in casting.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非脱气炉钢中氢含量的预测模型
在钢铁加工过程中,氢可能会引起一些问题。由氢引起或增强的问题范围从不同类型的气泡,如针孔到连铸过程中的破裂。再往下,偏析和脆化可能导致开裂,如剥落或起泡。这些问题会影响工厂的生产率,并对设备维护和额外的钢材处理需求产生成本影响。有些问题会导致刮擦。虽然真空脱气有效地控制了钢中的氢含量,但它带来了额外的成本,这对许多产品来说是不合理的。这项工作旨在确定Ternium巴西炼钢厂钢液中氢的主要来源,并提出一个模型来决定脱气过程中氢测量的需要,重点是真空脱气不是规范要求的钢。对这些钢来说,保证溶解氢的控制水平以避免问题是至关重要的,尤其是在铸造时。一旦确定了来源,就建立一个模型来预测二次冶金处理开始时的氢含量。在此基础上,提出了在该步骤中是否测量氢气,以确定是否需要真空脱气,以确保铸造安全。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
40
审稿时长
12 weeks
期刊最新文献
Projeto, construção e validação de um tribômetro ball-cratering de configuração mecânica esfera-fixa Influência das temperaturas de pré e pós-aquecimento sobre a formação de trincas induzidas por hidrogênio na soldagem de reparo de aços AISI D6 Study of the polystyrene degradation in water using nanoparticle tracking analysis (NTA) Flotação seletiva de minério fosfático sílico-carbonatado com coletores anfotéricos Pré-concentração de minério de ouro para caracterização das formas de ocorrência e associações minerais
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1