{"title":"TERRA FORMATION CONTROL (O R HOW TO MOVE MOUNTAINS )","authors":"J. Rankin","doi":"10.5121/IJCGA.2015.5103","DOIUrl":null,"url":null,"abstract":"The new Uplift Model of terrain generation is generalized here and provides new possibilities for terra formation control unlike previous fractal terrain generation methods. With the Uplift Model fine-grained editing is possible allowing the designer to move mountains and small hills to more suitable locations creating gaps or valleys or deep bays rather than only being able to accept the positions dictated by the algorithm itself. Coupled with this is a compressed file storage format considerably smaller in size that the traditional height field or height map storage requirements.","PeriodicalId":54969,"journal":{"name":"International Journal of Computational Geometry & Applications","volume":"5 1","pages":"39-46"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5121/IJCGA.2015.5103","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Geometry & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJCGA.2015.5103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
The new Uplift Model of terrain generation is generalized here and provides new possibilities for terra formation control unlike previous fractal terrain generation methods. With the Uplift Model fine-grained editing is possible allowing the designer to move mountains and small hills to more suitable locations creating gaps or valleys or deep bays rather than only being able to accept the positions dictated by the algorithm itself. Coupled with this is a compressed file storage format considerably smaller in size that the traditional height field or height map storage requirements.
期刊介绍:
The International Journal of Computational Geometry & Applications (IJCGA) is a quarterly journal devoted to the field of computational geometry within the framework of design and analysis of algorithms.
Emphasis is placed on the computational aspects of geometric problems that arise in various fields of science and engineering including computer-aided geometry design (CAGD), computer graphics, constructive solid geometry (CSG), operations research, pattern recognition, robotics, solid modelling, VLSI routing/layout, and others. Research contributions ranging from theoretical results in algorithm design — sequential or parallel, probabilistic or randomized algorithms — to applications in the above-mentioned areas are welcome. Research findings or experiences in the implementations of geometric algorithms, such as numerical stability, and papers with a geometric flavour related to algorithms or the application areas of computational geometry are also welcome.