A Quantum Cryptography Protocol for Access Control in Big Data

IF 0.5 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Cooperative Information Systems Pub Date : 2018-06-30 DOI:10.5121/ijcis.2018.8201
Abiodun O. Odedoyin, Helen O. Odukoya, Ayodeji O. Oluwatope
{"title":"A Quantum Cryptography Protocol for Access Control in Big Data","authors":"Abiodun O. Odedoyin, Helen O. Odukoya, Ayodeji O. Oluwatope","doi":"10.5121/ijcis.2018.8201","DOIUrl":null,"url":null,"abstract":"Modern cryptography targeted towards providing data confidentiality still pose some limitations. The security of public-key cryptography is based on unproven assumptions associated with the hardness /complicatedness of certain mathematical problems. However, public-key cryptography is not unconditionally secure: there is no proof that the problems on which it is based are intractable or even that their complexity is not polynomial. Therefore, public-key cryptography is not immune to unexpectedly strong computational power or better cryptanalysis techniques. The strength of modern cryptography is being weakened and with advances of big data, could gradually be suppressed. Moreover, most of the currently used public-key cryptographic schemes could be cracked in polynomial time with a quantum computer. This paper presents a renewed focus in fortifying the confidentiality of big data by proposing a quantum-cryptographic protocol. A framework was constructed for realizing the protocol, considering some characteristics of big data and conceptualized using defined propositions and theorems.","PeriodicalId":54966,"journal":{"name":"International Journal of Cooperative Information Systems","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2018-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cooperative Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5121/ijcis.2018.8201","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Modern cryptography targeted towards providing data confidentiality still pose some limitations. The security of public-key cryptography is based on unproven assumptions associated with the hardness /complicatedness of certain mathematical problems. However, public-key cryptography is not unconditionally secure: there is no proof that the problems on which it is based are intractable or even that their complexity is not polynomial. Therefore, public-key cryptography is not immune to unexpectedly strong computational power or better cryptanalysis techniques. The strength of modern cryptography is being weakened and with advances of big data, could gradually be suppressed. Moreover, most of the currently used public-key cryptographic schemes could be cracked in polynomial time with a quantum computer. This paper presents a renewed focus in fortifying the confidentiality of big data by proposing a quantum-cryptographic protocol. A framework was constructed for realizing the protocol, considering some characteristics of big data and conceptualized using defined propositions and theorems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向大数据访问控制的量子密码协议
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Cooperative Information Systems
International Journal of Cooperative Information Systems 工程技术-计算机:信息系统
CiteScore
2.30
自引率
0.00%
发文量
8
审稿时长
>12 weeks
期刊介绍: The paradigm for the next generation of information systems (ISs) will involve large numbers of ISs distributed over large, complex computer/communication networks. Such ISs will manage or have access to large amounts of information and computing services and will interoperate as required. These support individual or collaborative human work. Communication among component systems will be done using protocols that range from conventional ones to those based on distributed AI. We call such next generation ISs Cooperative Information Systems (CIS). The International Journal of Cooperative Information Systems (IJCIS) addresses the intricacies of cooperative work in the framework of distributed interoperable information systems. It provides a forum for the presentation and dissemination of research covering all aspects of CIS design, requirements, functionality, implementation, deployment, and evolution.
期刊最新文献
Secured Framework with a Hash Function-Enabled Keyword Search in Cloud Storage Services Edge Computing Security of Mobile Communication System Based on Computer Algorithms CC2530-based wireless data long-distance communication simulation design and application ACSICS: Joint Distribution Mode Integrating Agricultural Industry Chain Logistics Under the Background of Artificial Intelligence IMRCDS: Study on Soft Sensing Model of Multi-component System Concentration Based on Linear Superposition of Single Molecule System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1