A Self-Learning Diagnosis Algorithm Based on Data Clustering

D. Tretyakov
{"title":"A Self-Learning Diagnosis Algorithm Based on Data Clustering","authors":"D. Tretyakov","doi":"10.4236/ICA.2016.73009","DOIUrl":null,"url":null,"abstract":"The \narticle describes an approach to building a self-learning diagnostic algorithm. \nThe self-learning algorithm creates models of the object under consideration. \nThe models are formed periodically through a certain time period. The model \nincludes a set of functions that can describe whole object, or a part of the \nobject, or a specified functionality of the object. Thus, information about \nfault location can be obtained. During operation of the object the algorithm \ncollects data received from sensors. Then the algorithm creates samples related \nto steady state operation. Clustering of those samples is used for the \nfunctions definition. Values of the functions in the centers of clusters are \nstored in the computer’s memory. To illustrate the considered approach, its \napplication to the diagnosis of turbomachines is described.","PeriodicalId":62904,"journal":{"name":"智能控制与自动化(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"智能控制与自动化(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/ICA.2016.73009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The article describes an approach to building a self-learning diagnostic algorithm. The self-learning algorithm creates models of the object under consideration. The models are formed periodically through a certain time period. The model includes a set of functions that can describe whole object, or a part of the object, or a specified functionality of the object. Thus, information about fault location can be obtained. During operation of the object the algorithm collects data received from sensors. Then the algorithm creates samples related to steady state operation. Clustering of those samples is used for the functions definition. Values of the functions in the centers of clusters are stored in the computer’s memory. To illustrate the considered approach, its application to the diagnosis of turbomachines is described.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于数据聚类的自学习诊断算法
本文描述了一种构建自学习诊断算法的方法。自学习算法创建考虑对象的模型。模型是在一定时间周期内周期性形成的。模型包括一组函数,可以描述整个对象,也可以描述对象的一部分,也可以描述对象的特定功能。从而获取故障定位信息。在对象的操作过程中,算法收集从传感器接收的数据。然后,该算法生成与稳态运行相关的样本。这些样本的聚类用于函数定义。集群中心的函数值存储在计算机的存储器中。为了说明所考虑的方法,描述了它在涡轮机械诊断中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
243
期刊最新文献
Maximizing the Efficiency of Automation Solutions with Automation 360: Approaches for Developing Subtasks and Retry Framework Data-Driven Model Identification and Control of the Inertial Systems Using Singular Value to Set Output Disturbance Limits to Feedback ILC Control Blockchain-Based Islamic Marriage Certification with the Supremacy of Web 3.0 Artificial Intelligence Trends and Ethics: Issues and Alternatives for Investors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1