Hypoxia-inducible factor-mediated induction of Wnt-1 induced signaling protein 2 contributes to attenuated progression of breast cancer

Jerry H. Fuady, M. R. Bordoli, Irene Abreu-Rodríguez, G. Kristiansen, D. Hoogewijs, D. Stiehl, R. Wenger
{"title":"Hypoxia-inducible factor-mediated induction of Wnt-1 induced signaling protein 2 contributes to attenuated progression of breast cancer","authors":"Jerry H. Fuady, M. R. Bordoli, Irene Abreu-Rodríguez, G. Kristiansen, D. Hoogewijs, D. Stiehl, R. Wenger","doi":"10.5167/UZH-107643","DOIUrl":null,"url":null,"abstract":"Hypoxia and the hypoxia-inducible factor (HIF) signaling pathway trigger the expression of several genes involved in cancer progression and resistance to therapy. Transcriptionally active HIF-1 and HIF-2 regulate overlapping sets of target genes, and only few HIF-2 specific target genes are known so far. Here we investigated oxygen-regulated expression of Wnt-1 induced signaling protein 2 (WISP-2), which has been reported to attenuate the progression of breast cancer. WISP-2 was hypoxically induced in low-invasive luminal-like breast cancer cell lines at both the messenger RNA and protein levels, mainly in a HIF-2α-dependent manner. HIF-2-driven regulation of the WISP-2 promoter in breast cancer cells is almost entirely mediated by two phylogenetically and only partially conserved functional hypoxia response elements located in a microsatellite region upstream of the transcriptional start site. High WISP-2 tumor levels were associated with increased HIF-2α, decreased tumor macrophage density, and a better prognosis. Silencing WISP-2 increased anchorage-independent colony formation and recovery from scratches in confluent cell layers of normally low-invasive MCF-7 cancer cells. Interestingly, these changes in cancer cell aggressiveness could be phenocopied by HIF-2α silencing, suggesting that direct HIF-2-mediated transcriptional induction of WISP-2 gene expression might at least partially explain the association of high HIF-2α tumor levels with prolonged overall survival of patients with breast cancer.","PeriodicalId":73270,"journal":{"name":"Hypoxia (Auckland, N.Z.)","volume":"4 1","pages":"23-33"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hypoxia (Auckland, N.Z.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5167/UZH-107643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Hypoxia and the hypoxia-inducible factor (HIF) signaling pathway trigger the expression of several genes involved in cancer progression and resistance to therapy. Transcriptionally active HIF-1 and HIF-2 regulate overlapping sets of target genes, and only few HIF-2 specific target genes are known so far. Here we investigated oxygen-regulated expression of Wnt-1 induced signaling protein 2 (WISP-2), which has been reported to attenuate the progression of breast cancer. WISP-2 was hypoxically induced in low-invasive luminal-like breast cancer cell lines at both the messenger RNA and protein levels, mainly in a HIF-2α-dependent manner. HIF-2-driven regulation of the WISP-2 promoter in breast cancer cells is almost entirely mediated by two phylogenetically and only partially conserved functional hypoxia response elements located in a microsatellite region upstream of the transcriptional start site. High WISP-2 tumor levels were associated with increased HIF-2α, decreased tumor macrophage density, and a better prognosis. Silencing WISP-2 increased anchorage-independent colony formation and recovery from scratches in confluent cell layers of normally low-invasive MCF-7 cancer cells. Interestingly, these changes in cancer cell aggressiveness could be phenocopied by HIF-2α silencing, suggesting that direct HIF-2-mediated transcriptional induction of WISP-2 gene expression might at least partially explain the association of high HIF-2α tumor levels with prolonged overall survival of patients with breast cancer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
缺氧诱导因子介导的Wnt-1诱导的信号蛋白2有助于减缓乳腺癌的进展
缺氧和缺氧诱导因子(HIF)信号通路触发了一些参与癌症进展和治疗抵抗的基因的表达。转录活性的HIF-1和HIF-2调节重叠的靶基因,目前已知的HIF-2特异性靶基因很少。在这里,我们研究了氧调节Wnt-1诱导的信号蛋白2 (WISP-2)的表达,该蛋白已被报道可以减缓乳腺癌的进展。低侵袭性发光样乳腺癌细胞系中,WISP-2在信使RNA和蛋白水平上均被缺氧诱导,主要以hif -2α依赖的方式表达。乳腺癌细胞中hif -2驱动的WISP-2启动子的调控几乎完全由两个系统发育上的、仅部分保守的功能性缺氧反应元件介导,这些元件位于转录起始位点上游的微卫星区域。高WISP-2肿瘤水平与HIF-2α升高、肿瘤巨噬细胞密度降低、预后较好相关。沉默WISP-2增加了正常低侵袭性MCF-7癌细胞融合层中不依赖锚定的集落形成和从划痕中恢复。有趣的是,这些癌细胞侵袭性的变化可以通过HIF-2α沉默来表型化,这表明hif -2介导的WISP-2基因表达的直接转录诱导可能至少部分解释了高HIF-2α肿瘤水平与延长乳腺癌患者总生存期的关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
期刊最新文献
Abstract IA-015: Hypoxia-induced SETX links replication stress with the unfolded protein response Abstract PO-033: Papaverine derivative smv-32 alleviates tumor hypoxia and radiosensitizes tumors by inhibiting mitochondrial metabolism Abstract PO-034: Changes in cancer associated fibroblast subsets following angiotensin II type I receptor blocker (ARB) treatment reduces transient hypoxia and radiation resistance Abstract IA-017: Chromatin and gene transcription in hypoxia Abstract IA-016: Metabolic deregulation drives a redox vulnerability in pancreatic cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1