Effect of competition on niche dynamics of syntopic grazing ungulates: contrasting the predictions of habitat selection models using stable isotope analysis
D. Codron, J. Hull, J. Brink, J. Codron, D. Ward, M. Clauss
{"title":"Effect of competition on niche dynamics of syntopic grazing ungulates: contrasting the predictions of habitat selection models using stable isotope analysis","authors":"D. Codron, J. Hull, J. Brink, J. Codron, D. Ward, M. Clauss","doi":"10.5167/UZH-49216","DOIUrl":null,"url":null,"abstract":"Background: Theories of density-dependent habitat selection provide two solutions for co-existence of competing species. The niche compression hypothesis predicts that species reduce their respective niche breadths in response to inter-specific competition. Alternatively, if the species have similar resource preferences, the subordinate species may be forced to expand its niche to incorporate secondary resources. Aim: Determine whether grazing ungulate species partition the resource by compression or expansion of dietary niches. Organisms: Black wildebeest (Connochaetes gnou) and blue wildebeest (C. taurinus). Methods: Stable carbon and nitrogen isotope analysis of faeces. Isotopic niche breadths are compared across allopatric and sympatric wildebeest populations in South African grasslands. Results: Stable carbon and nitrogen isotope niche breadths of the two wildebeest species were virtually identical. In sympatry, however, black wildebeest had a narrower δ13C niche breadth (indicating almost exclusive use of C4 grass), whereas blue wildebeest had a wider δ13C niche breadth (indicating significant contributions from C3 sources). Blue wildebeest also had a wider δ15N niche breadth than sympatric black wildebeest. Moreover, the δ13C niche breadths of sympatric black wildebeest and blue wildebeest were narrower and wider, respectively, than those of allopatric populations of either species. Conclusions: Isotope niche dynamics across allopatric and sympatric populations arise due to the combined effects of competition and habitat heterogeneity on resource use. Although results for black wildebeest resemble niche compression, this hypothesis cannot explain patterns observed in blue wildebeest. Expansion of the blue wildebeest niche, and restricted niche breadth of black wildebeest, is consistent with predictions of a shared preference model in which black wildebeest are the dominant competitor. When competition is operating, differences in the way species use secondary resources can have an important role in structuring grazer assemblages.","PeriodicalId":50469,"journal":{"name":"Evolutionary Ecology Research","volume":"13 1","pages":"217-235"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Ecology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5167/UZH-49216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 25
Abstract
Background: Theories of density-dependent habitat selection provide two solutions for co-existence of competing species. The niche compression hypothesis predicts that species reduce their respective niche breadths in response to inter-specific competition. Alternatively, if the species have similar resource preferences, the subordinate species may be forced to expand its niche to incorporate secondary resources. Aim: Determine whether grazing ungulate species partition the resource by compression or expansion of dietary niches. Organisms: Black wildebeest (Connochaetes gnou) and blue wildebeest (C. taurinus). Methods: Stable carbon and nitrogen isotope analysis of faeces. Isotopic niche breadths are compared across allopatric and sympatric wildebeest populations in South African grasslands. Results: Stable carbon and nitrogen isotope niche breadths of the two wildebeest species were virtually identical. In sympatry, however, black wildebeest had a narrower δ13C niche breadth (indicating almost exclusive use of C4 grass), whereas blue wildebeest had a wider δ13C niche breadth (indicating significant contributions from C3 sources). Blue wildebeest also had a wider δ15N niche breadth than sympatric black wildebeest. Moreover, the δ13C niche breadths of sympatric black wildebeest and blue wildebeest were narrower and wider, respectively, than those of allopatric populations of either species. Conclusions: Isotope niche dynamics across allopatric and sympatric populations arise due to the combined effects of competition and habitat heterogeneity on resource use. Although results for black wildebeest resemble niche compression, this hypothesis cannot explain patterns observed in blue wildebeest. Expansion of the blue wildebeest niche, and restricted niche breadth of black wildebeest, is consistent with predictions of a shared preference model in which black wildebeest are the dominant competitor. When competition is operating, differences in the way species use secondary resources can have an important role in structuring grazer assemblages.
期刊介绍:
Evolutionary Ecology Research publishes original research contributions focusing on the overlap between ecology
and evolution. Papers may treat any taxon or be general. They may be empirical, theoretical or a combination of the two.
EER prefers conceptual contributions that take intellectual risks or that test ideas.