A 3-state model for multidimensional genomic data integration

Karol Baca-López, María D. Correa-Rodríguez, R. Flores-Espinosa, R. García-Herrera, Claudia Hernandez-Armenta, A. Hidalgo-Miranda, Aldo Huerta-Verde, Ivan Imaz-Rosshandler, Ana V Martinez-Rubio, Alejandra Medina-Escareno, R. Mendoza-Smith, M. Rodríguez-Dorantes, I. Salido-Guadarrama, E. Hernández-Lemus, C. Rangel-Escareño
{"title":"A 3-state model for multidimensional genomic data integration","authors":"Karol Baca-López, María D. Correa-Rodríguez, R. Flores-Espinosa, R. García-Herrera, Claudia Hernandez-Armenta, A. Hidalgo-Miranda, Aldo Huerta-Verde, Ivan Imaz-Rosshandler, Ana V Martinez-Rubio, Alejandra Medina-Escareno, R. Mendoza-Smith, M. Rodríguez-Dorantes, I. Salido-Guadarrama, E. Hernández-Lemus, C. Rangel-Escareño","doi":"10.4161/sysb.25898","DOIUrl":null,"url":null,"abstract":"Background: Genomic technologies have allowed a large-scale molecular characterization of living organisms, involving the generation and interpretation of data at an unprecedented scale. Advanced platforms for the detection of different types of genomic alterations have been developed and applied to analyses of living organisms and, in particular, cancer genomes. It is clear now that studies based on a single platform are limited compared with the extent of knowledge gain possible when exploiting different platforms together. There is therefore a need for systematic methodologies facilitating data management, visualization, and integration. Materials and Methods: We present a 3-state model (3-MDI) that integrates several technological platforms, visualizing and prioritizing different biological scenarios, and thus enables researchers to pursue data exploration in an educated way, where some or all of the explored avenues could be used to determine thresholds for differential changes in the examined platforms, or may help identify genes that follow an interesting pattern. Conclusion: Each additional genomic data dimension increases both the amount of information and consequently the biological and computational complexity of the analysis. We have demonstrated here, however, that multidimensional genomic data driven approaches can facilitate finding relevant genes that would otherwise largely remain unexplored because they would be overlooked in traditional analyses of individual biological experiments.","PeriodicalId":90057,"journal":{"name":"Systems biomedicine (Austin, Tex.)","volume":"1 1","pages":"122 - 129"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/sysb.25898","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems biomedicine (Austin, Tex.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4161/sysb.25898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Background: Genomic technologies have allowed a large-scale molecular characterization of living organisms, involving the generation and interpretation of data at an unprecedented scale. Advanced platforms for the detection of different types of genomic alterations have been developed and applied to analyses of living organisms and, in particular, cancer genomes. It is clear now that studies based on a single platform are limited compared with the extent of knowledge gain possible when exploiting different platforms together. There is therefore a need for systematic methodologies facilitating data management, visualization, and integration. Materials and Methods: We present a 3-state model (3-MDI) that integrates several technological platforms, visualizing and prioritizing different biological scenarios, and thus enables researchers to pursue data exploration in an educated way, where some or all of the explored avenues could be used to determine thresholds for differential changes in the examined platforms, or may help identify genes that follow an interesting pattern. Conclusion: Each additional genomic data dimension increases both the amount of information and consequently the biological and computational complexity of the analysis. We have demonstrated here, however, that multidimensional genomic data driven approaches can facilitate finding relevant genes that would otherwise largely remain unexplored because they would be overlooked in traditional analyses of individual biological experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多维基因组数据集成的三态模型
背景:基因组技术已经允许对活生物体进行大规模的分子表征,涉及前所未有规模的数据生成和解释。用于检测不同类型基因组改变的先进平台已经开发出来,并应用于活生物体,特别是癌症基因组的分析。现在很明显,基于单一平台的研究与共同利用不同平台可能获得的知识程度相比是有限的。因此需要系统的方法来促进数据管理、可视化和集成。材料和方法:我们提出了一个3-状态模型(3-MDI),它集成了几个技术平台,可视化和优先考虑不同的生物学场景,从而使研究人员能够以一种有教育意义的方式进行数据探索,其中一些或所有探索的途径可用于确定在所检查的平台中差异变化的阈值,或者可能有助于识别遵循有趣模式的基因。结论:每增加一个基因组数据维度都会增加信息量,从而增加分析的生物学和计算复杂性。然而,我们在这里已经证明,多维基因组数据驱动的方法可以促进发现相关基因,否则这些基因在很大程度上仍未被探索,因为它们在个体生物学实验的传统分析中会被忽视。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gulf War Illness: Is there lasting damage to the endocrine-immune circuitry? Survival regression by data fusion An integrative exploratory analysis of –omics data from the ICGC cancer genomes lung adenocarcinoma study Drug-induced liver injury classification model based on in vitro human transcriptomics and in vivo rat clinical chemistry data Cross-organism toxicogenomics with group factor analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1