sbv IMPROVER Diagnostic Signature Challenge

J. Hoeng, G. Stolovitzky, M. Peitsch
{"title":"sbv IMPROVER Diagnostic Signature Challenge","authors":"J. Hoeng, G. Stolovitzky, M. Peitsch","doi":"10.4161/sysb.26324","DOIUrl":null,"url":null,"abstract":"The task of predicting disease phenotype from gene expression data has been addressed hundreds if not thousands of times in the recent literature. This expanding body of work is not only an indication that the problem is of great importance and general interest, but it also reveals that neither the experimental nor the computational limitations of translating data to disease information have been satisfactorily understood. To contribute to the advancement of the field, promote collaborative thinking and enable a fair and unbiased comparison of methods, IMPROVER revisited the problem of gene-expression to phenotype prediction using a collaborative-competition paradigm. This special issue of Systems Biomedicine reports the results of the sbv IMPROVER Diagnostic Signature Challenge designed to identify best analytic approaches to predict phenotype from gene expression data.","PeriodicalId":90057,"journal":{"name":"Systems biomedicine (Austin, Tex.)","volume":"1 1","pages":"193 - 195"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/sysb.26324","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems biomedicine (Austin, Tex.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4161/sysb.26324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The task of predicting disease phenotype from gene expression data has been addressed hundreds if not thousands of times in the recent literature. This expanding body of work is not only an indication that the problem is of great importance and general interest, but it also reveals that neither the experimental nor the computational limitations of translating data to disease information have been satisfactorily understood. To contribute to the advancement of the field, promote collaborative thinking and enable a fair and unbiased comparison of methods, IMPROVER revisited the problem of gene-expression to phenotype prediction using a collaborative-competition paradigm. This special issue of Systems Biomedicine reports the results of the sbv IMPROVER Diagnostic Signature Challenge designed to identify best analytic approaches to predict phenotype from gene expression data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
sbv improved诊断签名挑战
在最近的文献中,从基因表达数据预测疾病表型的任务已经被解决了数百次,如果不是数千次的话。这一不断扩大的工作不仅表明这个问题非常重要和普遍感兴趣,而且还表明,将数据转化为疾病信息的实验和计算限制都没有得到令人满意的理解。为了促进该领域的发展,促进协作思维,并使方法的比较公平和公正,IMPROVER使用协作-竞争范式重新审视了基因表达到表型预测的问题。本期《系统生物医学》特刊报道了sbv IMPROVER诊断特征挑战的结果,该挑战旨在确定从基因表达数据中预测表型的最佳分析方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gulf War Illness: Is there lasting damage to the endocrine-immune circuitry? Survival regression by data fusion An integrative exploratory analysis of –omics data from the ICGC cancer genomes lung adenocarcinoma study Drug-induced liver injury classification model based on in vitro human transcriptomics and in vivo rat clinical chemistry data Cross-organism toxicogenomics with group factor analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1