Prediction of gene expression in human using rat in vivo gene expression in Japanese Toxicogenomics Project

Martin Otava, Z. Shkedy, Adetayo S Kasim
{"title":"Prediction of gene expression in human using rat in vivo gene expression in Japanese Toxicogenomics Project","authors":"Martin Otava, Z. Shkedy, Adetayo S Kasim","doi":"10.4161/sysb.29412","DOIUrl":null,"url":null,"abstract":"The Japanese Toxicogenomics Project (TGP) provides large amount of data for the toxicology and safety framework. We focus on gene expression data of rat in vivo and human in vitro. We consider two different analyses for the TGP data. The first analysis is based on two-way analysis of variance model and the goal is to detect genes with significant dose-response relationship in both humans and rats. The second analysis consists of a trend analysis at each time point and the goal is to detect genes in the rat in order to predict gene expression in humans. The first analysis leads us to conclusions about the heterogeneity of the compound set and will suggest how to address this issue to improve future analyses. In the second part, we identify, for particular compounds, groups of genes that are translatable from rats to humans, so they can be used for prediction of human in vitro data based on rat in vivo data.","PeriodicalId":90057,"journal":{"name":"Systems biomedicine (Austin, Tex.)","volume":"2 1","pages":"15 - 8"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/sysb.29412","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems biomedicine (Austin, Tex.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4161/sysb.29412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The Japanese Toxicogenomics Project (TGP) provides large amount of data for the toxicology and safety framework. We focus on gene expression data of rat in vivo and human in vitro. We consider two different analyses for the TGP data. The first analysis is based on two-way analysis of variance model and the goal is to detect genes with significant dose-response relationship in both humans and rats. The second analysis consists of a trend analysis at each time point and the goal is to detect genes in the rat in order to predict gene expression in humans. The first analysis leads us to conclusions about the heterogeneity of the compound set and will suggest how to address this issue to improve future analyses. In the second part, we identify, for particular compounds, groups of genes that are translatable from rats to humans, so they can be used for prediction of human in vitro data based on rat in vivo data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
日本毒物基因组计划中利用大鼠体内基因表达预测人类基因表达
日本毒物基因组计划(TGP)为毒理学和安全框架提供了大量数据。我们关注的是大鼠体内和人体外的基因表达数据。我们考虑对三峡水库数据进行两种不同的分析。第一个分析是基于方差的双向分析模型,目的是在人和大鼠中检测出具有显著剂量-反应关系的基因。第二个分析包括每个时间点的趋势分析,目的是检测大鼠的基因,以预测人类的基因表达。第一个分析使我们得出关于复合集的异质性的结论,并将建议如何解决这个问题,以改进未来的分析。在第二部分中,我们确定了特定化合物的基因组,这些基因组可以从大鼠翻译到人类,因此它们可以用于基于大鼠体内数据的人类体外数据预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gulf War Illness: Is there lasting damage to the endocrine-immune circuitry? Survival regression by data fusion An integrative exploratory analysis of –omics data from the ICGC cancer genomes lung adenocarcinoma study Drug-induced liver injury classification model based on in vitro human transcriptomics and in vivo rat clinical chemistry data Cross-organism toxicogenomics with group factor analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1