Topic modelling-based analysis of COVID-19 vaccine articles published in the preprint server MedRxiv

IF 0.4 Q4 INFORMATION SCIENCE & LIBRARY SCIENCE Annals of Library and Information Studies Pub Date : 2023-01-01 DOI:10.56042/alis.v70i1.71939
N. Deshpande, V. Ligade, S. Shaikh, A. Khode
{"title":"Topic modelling-based analysis of COVID-19 vaccine articles published in the preprint server MedRxiv","authors":"N. Deshpande, V. Ligade, S. Shaikh, A. Khode","doi":"10.56042/alis.v70i1.71939","DOIUrl":null,"url":null,"abstract":"Two thousand one hundred and ninety-eight research publications on COVID-19 vaccines in MedRxiv preprint repository during January 01, 2020 and December 31, 2021 were analyzed for topic modelling with unsupervised inference method. Latent Dirichlet Allocation (LDA) method was used to investigate the thematic structure of the preprints. It was observed that the published articles were related to either clinical trials or patient responses to vaccine or modelling for various applications such as infection transmission, vaccine allocation, vaccine hesitancy etc. © 2023, National Institute of Science Communication and Policy Research. All rights reserved.","PeriodicalId":42973,"journal":{"name":"Annals of Library and Information Studies","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Library and Information Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56042/alis.v70i1.71939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Two thousand one hundred and ninety-eight research publications on COVID-19 vaccines in MedRxiv preprint repository during January 01, 2020 and December 31, 2021 were analyzed for topic modelling with unsupervised inference method. Latent Dirichlet Allocation (LDA) method was used to investigate the thematic structure of the preprints. It was observed that the published articles were related to either clinical trials or patient responses to vaccine or modelling for various applications such as infection transmission, vaccine allocation, vaccine hesitancy etc. © 2023, National Institute of Science Communication and Policy Research. All rights reserved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预印本服务器MedRxiv上发表的COVID-19疫苗文章的主题建模分析
分析2020年1月1日至2021年12月31日MedRxiv预印本库中关于COVID-19疫苗的2898篇研究论文,采用无监督推理方法进行主题建模。采用潜在狄利克雷分配(Latent Dirichlet Allocation, LDA)方法对预印本的主题结构进行研究。据观察,发表的文章要么与临床试验有关,要么与患者对疫苗的反应有关,要么与感染传播、疫苗分配、疫苗犹豫等各种应用的建模有关。©2023,国家科学传播和政策研究所。版权所有。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of Library and Information Studies
Annals of Library and Information Studies INFORMATION SCIENCE & LIBRARY SCIENCE-
CiteScore
1.60
自引率
16.70%
发文量
3
审稿时长
20 weeks
期刊介绍: Annals of Library and Information Studies is a leading quarterly journal in library and information studies publishing original papers, survey reports, reviews, short communications, and letters pertaining to library science, information science and computer applications in these fields.
期刊最新文献
Annals of Library and Information Studies: Some reflections and future directions A study of ‘calf-path’ in file naming in institutional repositories in India The scope of open peer review in the scholarly publishing ecosystem Collaborative authorship patterns in computer science publications Automatic extraction of significant terms from the title and abstract of scientific papers using the machine learning algorithm: A multiple module approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1