{"title":"Elevated CO2 Could Reduce Spikelet Fertility and Grain Appearance Quality of Rice(Oryza sativa L.) Grown under High-temperature Conditions","authors":"Masahiro Yamaguchi, Shoma Kamiya, Dai Kokubun, Tomoki Nakayama, Tetsushi Yonekura, Yoshihisa Kohno","doi":"10.5572/ajae.2022.044","DOIUrl":null,"url":null,"abstract":"<div><p>Two Japanese rice cultivars with different heat-tolerance, Hinohikari (sensitive) and Nikomaru (tolerant), were grown in pots inside open-top chambers and exposed to ambient CO<sub>2</sub> (400 µmol mol<sup>−1</sup>) or elevated CO<sub>2</sub> (550 µmol mol<sup>−1</sup>) from the beginning of the tillering stage to maturity. The study was conducted in Nagasaki, in the Kyushu region of Japan, where heat stress on rice has become increasingly evident. Although elevated CO<sub>2</sub> significantly improved the net photosynthesis and whole-plant growth of the cultivars, there were no significant effects on grain yield, which in turn reduced harvest index. In both cultivars, adverse effects occurred with elevated CO<sub>2</sub>, such as reductions in spikelet fertility and grain appearance quality, which are typical manifestations of heat stress in rice. During the flowering period, the air temperature was high that spikelet fertility was reduced even under ambient CO<sub>2</sub> conditions for both cultivars. These results suggest that, under high-temperature conditions, elevated CO<sub>2</sub> could induce or exacerbate the manifestations of heat stress in rice. Because transpiration rate in the flag leaf was significantly reduced by the exposure to elevated CO<sub>2</sub>, it is possible that elevated CO<sub>2</sub> increased plant temperature via a reduction in transpiration during flowering period, although we did not detect significance of the increase in leaf and panicle temperature. To ensure a more confident conclusion, further studies focusing on the effects of elevated CO<sub>2</sub> on the determinants of spikelet fertility and grain appearance quality with other cultivars in different year are required.</p></div>","PeriodicalId":45358,"journal":{"name":"Asian Journal of Atmospheric Environment","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.5572/ajae.2022.044.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Atmospheric Environment","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.5572/ajae.2022.044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Two Japanese rice cultivars with different heat-tolerance, Hinohikari (sensitive) and Nikomaru (tolerant), were grown in pots inside open-top chambers and exposed to ambient CO2 (400 µmol mol−1) or elevated CO2 (550 µmol mol−1) from the beginning of the tillering stage to maturity. The study was conducted in Nagasaki, in the Kyushu region of Japan, where heat stress on rice has become increasingly evident. Although elevated CO2 significantly improved the net photosynthesis and whole-plant growth of the cultivars, there were no significant effects on grain yield, which in turn reduced harvest index. In both cultivars, adverse effects occurred with elevated CO2, such as reductions in spikelet fertility and grain appearance quality, which are typical manifestations of heat stress in rice. During the flowering period, the air temperature was high that spikelet fertility was reduced even under ambient CO2 conditions for both cultivars. These results suggest that, under high-temperature conditions, elevated CO2 could induce or exacerbate the manifestations of heat stress in rice. Because transpiration rate in the flag leaf was significantly reduced by the exposure to elevated CO2, it is possible that elevated CO2 increased plant temperature via a reduction in transpiration during flowering period, although we did not detect significance of the increase in leaf and panicle temperature. To ensure a more confident conclusion, further studies focusing on the effects of elevated CO2 on the determinants of spikelet fertility and grain appearance quality with other cultivars in different year are required.