Passively Q-Switched Erbium-Doped Fiber Laser Based on GeSe Saturable Absorber

Y. Liu, Zhifeng Hong, Xiaojuan Liu, Ran Zhang, Shiliang Yin
{"title":"Passively Q-Switched Erbium-Doped Fiber Laser Based on GeSe Saturable Absorber","authors":"Y. Liu, Zhifeng Hong, Xiaojuan Liu, Ran Zhang, Shiliang Yin","doi":"10.4236/OPJ.2021.114007","DOIUrl":null,"url":null,"abstract":"GeSe nanosheets were prepared by ultrasonic-assisted liquid phase exfoliation (LPE), and the nonlinear saturated absorption performance was experimentally studied. The modulation depth and saturation intensity of the prepared GeSe saturable absorber (SA) were 15% and 1.44 MW/cm2, respectively. Using the saturated absorption characteristics of GeSe SA, a passively Q-switched erbium-doped fiber laser was systematically demonstrated. As the pump power increases, the pulse repetition frequency increases from 22.8 kHz to 77.59 kHz. The shortest pulse duration is 1.51 μs, and the corresponding pulse energy is 46.14 nJ. Experimental results show that GeSe nanosheets can be used as high-efficiency SA in fiber lasers. Our results will provide a useful reference for demonstrating pulsed fiber lasers based on GeSe equipment.","PeriodicalId":64491,"journal":{"name":"光学与光子学期刊(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"光学与光子学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/OPJ.2021.114007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

GeSe nanosheets were prepared by ultrasonic-assisted liquid phase exfoliation (LPE), and the nonlinear saturated absorption performance was experimentally studied. The modulation depth and saturation intensity of the prepared GeSe saturable absorber (SA) were 15% and 1.44 MW/cm2, respectively. Using the saturated absorption characteristics of GeSe SA, a passively Q-switched erbium-doped fiber laser was systematically demonstrated. As the pump power increases, the pulse repetition frequency increases from 22.8 kHz to 77.59 kHz. The shortest pulse duration is 1.51 μs, and the corresponding pulse energy is 46.14 nJ. Experimental results show that GeSe nanosheets can be used as high-efficiency SA in fiber lasers. Our results will provide a useful reference for demonstrating pulsed fiber lasers based on GeSe equipment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于GeSe饱和吸收器的被动调q掺铒光纤激光器
采用超声辅助液相剥离法制备了GeSe纳米片,并对其非线性饱和吸收性能进行了实验研究。制备的GeSe饱和吸收剂(SA)的调制深度为15%,饱和强度为1.44 MW/cm2。利用GeSe SA的饱和吸收特性,系统地研制了一种被动调q掺铒光纤激光器。随着泵浦功率的增加,脉冲重复频率从22.8 kHz增加到77.59 kHz。最短脉冲持续时间为1.51 μs,脉冲能量为46.14 nJ。实验结果表明,GeSe纳米片可用于光纤激光器的高效SA。我们的研究结果将为基于GeSe设备的脉冲光纤激光器的演示提供有用的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
431
期刊最新文献
Analysis and Prediction of Effect of Turning Marks Diffraction on Image Quality of Optical System Numerical Simulation of External-Cavity Distributed Feedback Semiconductor Laser The Influence of Energy Transfer on the Color Temperature Change in Color-Tunable Organic Light Emitting Diodes with Interface Exciplex A High Spectral Efficient Frequency-Domain Channel-Estimation Method for the Polarization-Division-Multiplexed CO-OFDM-OQAM System The Study on the Relationship between Dynamic Balance Energy Distribution and Spectral Stability with Voltage Change in White Organic Light Emitting Diode
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1