Y. Liu, Zhifeng Hong, Xiaojuan Liu, Ran Zhang, Shiliang Yin
{"title":"Passively Q-Switched Erbium-Doped Fiber Laser Based on GeSe Saturable Absorber","authors":"Y. Liu, Zhifeng Hong, Xiaojuan Liu, Ran Zhang, Shiliang Yin","doi":"10.4236/OPJ.2021.114007","DOIUrl":null,"url":null,"abstract":"GeSe nanosheets were prepared by ultrasonic-assisted liquid phase exfoliation (LPE), and the nonlinear saturated absorption performance was experimentally studied. The modulation depth and saturation intensity of the prepared GeSe saturable absorber (SA) were 15% and 1.44 MW/cm2, respectively. Using the saturated absorption characteristics of GeSe SA, a passively Q-switched erbium-doped fiber laser was systematically demonstrated. As the pump power increases, the pulse repetition frequency increases from 22.8 kHz to 77.59 kHz. The shortest pulse duration is 1.51 μs, and the corresponding pulse energy is 46.14 nJ. Experimental results show that GeSe nanosheets can be used as high-efficiency SA in fiber lasers. Our results will provide a useful reference for demonstrating pulsed fiber lasers based on GeSe equipment.","PeriodicalId":64491,"journal":{"name":"光学与光子学期刊(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"光学与光子学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/OPJ.2021.114007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
GeSe nanosheets were prepared by ultrasonic-assisted liquid phase exfoliation (LPE), and the nonlinear saturated absorption performance was experimentally studied. The modulation depth and saturation intensity of the prepared GeSe saturable absorber (SA) were 15% and 1.44 MW/cm2, respectively. Using the saturated absorption characteristics of GeSe SA, a passively Q-switched erbium-doped fiber laser was systematically demonstrated. As the pump power increases, the pulse repetition frequency increases from 22.8 kHz to 77.59 kHz. The shortest pulse duration is 1.51 μs, and the corresponding pulse energy is 46.14 nJ. Experimental results show that GeSe nanosheets can be used as high-efficiency SA in fiber lasers. Our results will provide a useful reference for demonstrating pulsed fiber lasers based on GeSe equipment.