{"title":"An analytical and experimental study on dampening material effects on the dynamic behavior of free-free aluminum sheets","authors":"R. Khorasani, S. A. H. Kordkheili, H. Parviz","doi":"10.5267/J.ESM.2021.1.002","DOIUrl":null,"url":null,"abstract":"This work aims to present an experimentally verified analytical solution to examine damping properties of systems including viscoelastic treatments. Although there are several methods for characterizing the behavior of three-layer damping systems, the RKU method is the most frequently used one. In this paper, this method is modified such a way that to be applied for a five-layer damping system. The achieved analytical relations are then employed to study the effects of a four-layer vibration-absorbing coating on the dynamic behavior of an aluminum sheet with free-free boundary conditions. Since the vibration-damping properties of the coating are unknowns, its loss factor and shear modulus are experimentally extracted based on the ASTM E756-05 standard method. The comparison between the analytical solution and performed modal tests expresses the efficiency of the presented method.","PeriodicalId":37952,"journal":{"name":"Engineering Solid Mechanics","volume":"1 1","pages":"111-122"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Solid Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5267/J.ESM.2021.1.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
This work aims to present an experimentally verified analytical solution to examine damping properties of systems including viscoelastic treatments. Although there are several methods for characterizing the behavior of three-layer damping systems, the RKU method is the most frequently used one. In this paper, this method is modified such a way that to be applied for a five-layer damping system. The achieved analytical relations are then employed to study the effects of a four-layer vibration-absorbing coating on the dynamic behavior of an aluminum sheet with free-free boundary conditions. Since the vibration-damping properties of the coating are unknowns, its loss factor and shear modulus are experimentally extracted based on the ASTM E756-05 standard method. The comparison between the analytical solution and performed modal tests expresses the efficiency of the presented method.
期刊介绍:
Engineering Solid Mechanics (ESM) is an online international journal for publishing high quality peer reviewed papers in the field of theoretical and applied solid mechanics. The primary focus is to exchange ideas about investigating behavior and properties of engineering materials (such as metals, composites, ceramics, polymers, FGMs, rocks and concretes, asphalt mixtures, bio and nano materials) and their mechanical characterization (including strength and deformation behavior, fatigue and fracture, stress measurements, etc.) through experimental, theoretical and numerical research studies. Researchers and practitioners (from deferent areas such as mechanical and manufacturing, aerospace, railway, bio-mechanics, civil and mining, materials and metallurgy, oil, gas and petroleum industries, pipeline, marine and offshore sectors) are encouraged to submit their original, unpublished contributions.